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a. Cortical similarity of 84 categories C. Semantic similarity vs. cortical similarity
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scientists often use a cherry-picking strategy to only focus on a few categories,
e.g. faces and houses. Here, we explored a new and high-throughput strategy
to map the cortical activations with thousands of visual objects, and to offer
unique insights to the distributed cortical network basis of categorical
representations. Central to this strategy is a deep learning model, i.e. deep
residual network (ResNet), which has enabled computers to recognize natural
images with human-like performance. We built encoding models based on
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The ResNet is composed of 50 hierarhical convolutional layers for object recognition
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network patterns representing non-biological objects, biological objects and background scenes.
Subordinate object categories were modularly organized in finer scales. Interestingly, the brain
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Distributed Cortical Networks Represent Visual Object Categories

To map cortical representations of different categories of visual objects,
scientists often use a cherry-picking strategy to only focus on a few categories,
e.g. faces and houses. Here, we explored a new and high-throughput strategy
to map the cortical activations with thousands of visual objects, and to offer
unique 1insights to the distributed cortical network basis of categorical
representations. Central to this strategy is a deep learning model, i.e. deep
residual network (ResNet), which has enabled computers to recognize natural
images with human-like performance. We built encoding models based on
ResNet to predict the cortical responses to natural visual stimuli.
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The ResNet is composed of 50 hierarhical convolutional layers for object recognition
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Distributed Cortical Networks Represent Visual Object Categories

d. Category-selectivity

b.Top 10 categories
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Distributed Cortical Networks Represent Visual Object Categories

a. Cortical similarity of 84 categories
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C. Semantic similarity vs. cortical similarity
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d. Layer-wise contribution to
the categorical organization
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a. Cortical similarity of biological objects

Subj. JY (Q =0.187) Subj. XL (Q=0.175)

Subj. XF (Q = 0.183)

b. Layer-wise contribution to the
subordinate category organization

N
bear tiger elephant

cat dog monkey
lion horse sheep

goose chicken bird

shark fish snake
dolphin turtle

L woman man

Distributed Cortical Networks Represent Visual Object Categories

0.2r

0.15}

modularity (Q)




Distributed Cortical Networks Represent Visual Object Categories

Object categories are represented by distributed and overlapping cortical networks, instead of localized
regions. Similar activation patterns reflect similar semantic meanings for different categories. Visual
areas on the ventral pathway tended to be category selective. There are generally three characteristic
network patterns representing non-biological objects, biological objects and background scenes.
Subordinate object categories were modularly organized in finer scales. Interestingly, the brain
processed higher-level information about visual objects for distinguishing finer level categories.



