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A B S T R A C T

Despite the wide applications of functional magnetic resonance imaging (fMRI) to mapping brain activation and
connectivity in cortical gray matter, it has rarely been utilized to study white-matter functions. In this study, we
investigated the spatiotemporal characteristics of fMRI data within the white matter acquired from humans
both in the resting state and while watching a naturalistic movie. By using independent component analysis and
hierarchical clustering, resting-state fMRI data in the white matter were de-noised and decomposed into
spatially independent components, which were further assembled into hierarchically organized axonal fiber
bundles. Interestingly, such components were partly reorganized during natural vision. Relative to resting state,
the visual task specifically induced a stronger degree of temporal coherence within the optic radiations, as well
as significant correlations between the optic radiations and multiple cortical visual networks. Therefore, fMRI
contains rich functional information about the activity and connectivity within white matter at rest and during
tasks, challenging the conventional practice of taking white-matter signals as noise or artifacts.

Introduction

Since its inception, functional magnetic resonance imaging (fMRI)
has been focused on mapping activations and connections in the
cerebral gray matter (GM) (Bandettini et al., 1992; Kwong et al.,
1992; Ogawa et al., 1992; Biswal et al., 1995; Fox and Raichle, 2007). It
has had limited use in investigating the functional dynamics and
organization of the cerebral white matter (WM) (Gawryluk et al.,
2014). This paucity of WM-fMRI literature is disproportional con-
sidering that WM occupies about half of the human brain volume,
contains structural pathways for long-range signaling (Sporns et al.,
2005), and has critical implications for numerous neurological diseases
(Ffytche and Catani, 2005).

It has been often assumed that WM lacks the typical hemodynamic
changes driven by neural activity (Logothetis and Wandell, 2004).
Relative to GM, WM has much lower cerebral vascular density (Lierse
and Horstmann, 1965), blood volume (Jensen et al., 2006), and blood
flow (Van Osch et al., 2009). Moreover, energy consumption in WM is
about one fourth that of GM overall (Logothetis and Wandell, 2004),
with more energy used on action potentials rather than synapses
(Harris and Attwell, 2012). While neurometabolic and neurovascular
coupling in WM is also unclear (Logothetis and Wandell, 2004),

previous findings about the relationship between neural and hemody-
namic activities are all based on signals specific to GM (Logothetis
et al., 2001; Smith et al., 2002). It is problematic to simply extrapolate
such findings either for or against the validity of WM-fMRI.
Furthermore, artifacts of motion (Johnstone et al., 2006), partial-
volume (Jo et al., 2010), and physiological origin (Makedonov et al.,
2015) are also of concern in WM-fMRI. Hence, the fMRI signal in WM
has an unclear basis and an inherently low signal-to-noise ratio (SNR);
as such, it has been dismissed from analysis or interpretation in the
vast majority of fMRI studies.

However, increasing evidence has shed light on the feasibility of
using fMRI to map WM activation and connectivity. See Gawryluk et al.
(2014) for a review. Previous studies showed that inter-hemispheric
transfer tasks could induce fMRI activations in the corpus callosum
(Tettamanti et al., 2002; Fabri et al., 2011; Gawryluk et al., 2011),
through which activated cortical regions were structurally connected
across hemispheres (Mazerolle et al., 2010). Such callosal activations
may have a metabolic basis, since local cerebral metabolic rate for
glucose was found to depend on neural activity in the corpus callosum
given graded intra-cortical electrical stimuli (Weber et al., 2002).
Beyond the corpus callosum, WM activations have rarely been reported
in fMRI studies (Mosier et al., 1999; Mazerolle et al., 2013). Astafiev
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et al. (2015, 2016) have demonstrated that symptomatic chronic mTBI
subjects show abnormal neural activation during visual tracking tasks
in a common set of subcortical and white matter regions using BOLD
fMRI acquisitions. Moreover, Ding et al. reported that resting-state
fMRI signals in WM were correlated over long distances, as well as
locally in a similar anisotropic manner as observed with diffusion
tensor imaging (DTI). Although all prior studies that reported WM-
fMRI activations were based on T2

*-weighted MRI sequences, the WM-
fMRI signal and its correlational structure were recently shown to be
blood oxygenation level dependent (BOLD) (Ding et al., 2016). This
finding is important since T2

*-weighted signal fluctuation may arise
from both BOLD and non-BOLD origins: the former reflects changes in
R2

*, the latter may reflect changes in initial signal intensity (S0) likely
due to nuisance effects, e.g. motion artifacts and physiological noise
(Kundu et al., 2012). Collectively, these studies suggest that there is no
fundamental barrier for which fMRI is doomed to fail for functional
imaging in WM, paving the way for an emerging domain of fMRI
methodologies and applications.

Perhaps the most critical and practical challenge is the much lower
dynamic range in WM (i.e. versus that in GM). When univariate or
multivariate time-series analyses are applied to GM and WM voxels
together, signal variance and structure are dominated by voxels in GM,
whereas activity and connectivity patterns in WM are likely under-
detected or mistaken as noise. One potential way to deal with this issue
is to separate WM from GM and use data-driven analysis, e.g.
independent component analysis (ICA), to characterize the spatiotem-
poral patterns of signal versus noise exclusively in the WM. This is
helpful especially for the resting state, since the absence of any overt
task makes it more difficult to discriminate signal from noise without
any presumed temporal characteristics. A plausible criterion to distin-
guish signal from noise is based on their expected difference in
reproducibility within and across subjects. The brain's structural and
functional organization is generalizable and stable, serving as the
underlying constraint for the signal characteristics; this is not so for
noise. Once signal and noise are separated, a new stage may be formed
to further assess the network patterns of WM activity, as well as their
relationships with cortical networks. This may also allow for the
conjoint evaluation of the roles of WM and GM networks in perceptual,
behavioral, and cognitive tasks.

Taking this strategy, we set out to characterize WM-fMRI signals in
the resting state and also during free viewing of a natural movie. The
natural-vision paradigm provides a dynamic and realistic behavioral
context. As in the resting state, brain activity in this task state is
seemingly complex and unpredictable, yet it exhibits coordinated
cortical network patterns that support visual perception (Hasson
et al., 2004). Here, we further asked whether the patterns of functional
connectivity in the white matter would differ between the resting state
and the natural-vision state. The answer to this question was expected
to shed light on the functional relevance of white-matter fMRI. Briefly,
high-dimensional ICA was used to decompose and de-noise WM-fMRI
signals in the resting state and during a natural-vision task. From the
de-noised data, we found that WM-fMRI signals were patterned into
clusters and hierarchically organized in the resting state, whereas
naturalistic visual stimuli drove more coherent signal fluctuations within
the optic radiations, as well as the coupling between the WM pathways
and the GM networks engaged in visual processing and perception.

Methods and materials

Subjects

Thirteen healthy volunteers (25 ± 3 years old, 6 females, 10 right-
handed, normal or corrected to normal vision) participated in this
study in accordance with a protocol approved by the Institutional
Review Board at Purdue University. Two subjects were excluded
because they were self-reported to fall asleep during the sessions.

Experimental design

Each subject underwent four fMRI sessions with two conditions.
Two sessions were in the eyes-closed resting state, and the other two
were during free-viewing of an identical movie clip (The Good, the Bad,
and the Ugly, 1966). We chose this movie because it was previously
used to obtain interesting findings on cortical gray-matter activity
during natural vision (Hasson et al., 2004). Every movie-stimulation
session began with a blank gray screen presented for 42 s, followed by
the movie presented for 5 min and 37 s (from 162:54 to 168:33 min. in
the film), and ended with the blank screen again for 30 s. No sound was
played during the movie. The resting-state sessions had the same
duration as the movie-stimulation sessions. The session order was
randomized and counterbalanced across subjects. The scanner envir-
onment was darkened to minimize external light exposure. Hereafter,
we also refer to the movie stimulation condition as the task state, in
contrast to the resting state.

Data acquisition

Whole-brain structural and functional MRI images were acquired
using a 3-Tesla Signa HDx MRI system (General Electric Health Care,
Milwaukee, USA). A 16-channel receive-only phase array coil (NOVA
Medical, Wilmington, USA) was used during all acquisitions. The fMRI
data were acquired using a single-shot, gradient-recalled (GRE) echo-
planar imaging (EPI) sequence (38 interleaved axial slices with 3.5 mm
thickness and 3.5 × 3.5 mm2 in-plane resolution, TR=2000 ms,
TE=35 ms, flip angle=78°, field of view=22×22 cm2). T1-weighted
anatomical images covering the whole head were acquired with a
spoiled gradient recalled acquisition (SPGR) sequence (1×1×1 mm3

nominal resolution, TR/TE=5.7/2 ms, flip angle=12°).

Pre-processing

Pre-processing of the fMRI images was carried out with a combina-
tion of AFNI (Cox, 1996), FSL (Smith et al., 2004), and MATLAB
(Mathworks, Natick, MA). In brief, T1-weighted anatomical images
were non-linearly registered to the Montreal Neurological Institute
(MNI) brain template, using a combination of flirt and fnirt in FSL.
T2

*-weighted functional image time series were corrected for slice
timing (using slicetimer in FSL), co-registered to the first volume
within each series to account for head motion (using mcflirt in FSL),
masked out non-brain tissues (using 3dAutomask in AFNI), aligned to
the T1-weighted structural MRI (using align_epi_anat.py in AFNI),
and registered to the MNI space with 3-mm isotropic voxels (using
applywarp in FSL, and 3dresample in AFNI).

The first six volumes in the fMRI data were discarded to avoid any
pre-steady-state longitudinal magnetization. Each session's data was
subjected to third-order de-trending and low-pass filtering ( < 0.1 Hz)
using the regression and filtering toolboxes in MATLAB. For the movie
sessions, we excluded data acquired during the blank gray screen
presentation and further removed the first 6 volumes and the last 7
volumes of the movie to avoid any transient fMRI response during the
movie stimulation.

Following the pre-processing steps, data analysis for the fMRI data
was twofold: analysis within the WM-only and analysis within the GM-
only. This was achieved by creating and applying a WM mask to the
normalized fMRI images to isolate WM-only voxels. The WM mask was
created from the LONI Probabilistic White Matter template in the MNI
space (Shattuck et al., 2008) by setting a probabilistic threshold to a
level of 0.85. This threshold was chosen to be very conservative so as to
avoid possible partial volume effects close to GM/WM junctions; hence,
the mask covered most but not all WM voxels. The thalamus was not
included in the WM mask. The GM mask was derived by finding the
intersection of the complement of the WM mask and the brain mask in
the MNI template. Both the WM and GM masks were restricted to
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voxels within axial slices from z=−15 mm to z=51 mm. Linear spatial
smoothing (FWHM=6 mm) was then performed separately within the
WM or GM voxels to avoid partial volume effects between them.
Effectively, the voxels outside the mask were set to null, and thus did
not contribute to the smoothed voxel intensity, while the spatially
smoothed voxel time series was demeaned and variance normalized
before any subsequent analysis.

De-noising via independent component analysis (ICA)

For each condition (i.e. the resting state and the task state), the
fMRI data were separated into two sets for each of the two sessions
from every subject. In a total of four sets of fMRI data, two were from
resting state and the other two from the task state with naturalistic
visual stimuli. The fMRI data were then temporally concatenated
across subjects for each of the sets. The four concatenated fMRI
time-series data allowed us to evaluate the test-retest reproducibility
of the group-level ICA maps in the resting state and the task state.
Group spatial ICA using the Infomax algorithm (Bell and Sejnowski,
1995) was applied to each set of the concatenated data. This gave rise
to 70 spatially independent components (ICs) with distinct temporal
basis functions that yielded a sparse representation of the data; as such,
voxels were considered to be synchronized (i.e. functionally related)
within each component. To evaluate the test-retest reproducibility of
each of the 70 ICs, we calculated the spatial cross correlations between
the two sets of ICs for each condition. An IC in one set was assumed to
be reproducible if there was a corresponding IC in the other set that
was spatially correlated with this IC. We calculated the absolute values
of the correlation coefficients and found the optimal pairing by
maximizing the sum of the pair-wise absolute cross-correlation values.
Here, the absolute cross-correlation value was used because spatially
consistent ICA components might appear 180° out of phase from one
another. Upon visual inspection, non-reproducible components were
regarded as noise and discarded, whereas the remaining components
were re-assembled to generate the de-noised fMRI data for every
session and every subject. For each condition, the de-noised fMRI data
were further concatenated across the two sessions for each of the
eleven subjects, giving rise to 22 sessions in total. Then, group ICA was
applied again to the de-noised and concatenated data, generating about
30 ICs that characterized the WM-fMRI signals in the resting state or
during the natural visual stimulation.

Following group ICA, we used dual regression (Filippini et al.,
2009) against each subject's fMRI data to extract subject-specific ICA
maps in order to capture inter-subject differences (Tavor et al., 2016).
Briefly, the first (multiple) regression applied to the spatial domain,
using the group-level ICA maps as regressors to get individual time
series for each subject and each component; the second regression
applied to the time domain, using the obtained individual time series as
regressors to get individual-level ICA maps.

Hierarchical clustering based on temporal correlations

In both the resting state and the task state, the ICs of WM-fMRI
signals were progressively grouped into clusters based on the cross-
correlations of their corresponding time series and a complete-linkage
hierarchical clustering algorithm (Dasgupta and Long, 2005). At the
beginning of the algorithm, each component was in a cluster of its own.
These clusters were then progressively combined into larger clusters
until all components ended up in the same cluster. At each step, the
clusters separated by the ‘shortest distance' (i.e. the largest temporal
cross correlation) were combined. Such hierarchical clustering was
visualized as a dendrogram, which showed the sequence of clusters
merging and the distance at which each fusion took place (Cordes et al.,
2002; Dasgupta and Long, 2005; Wang and Li, 2013).

Comparison between the Resting and task states

We also compared the reproducibility of WM-fMRI ICA compo-
nents in the resting state versus the task state. For this purpose, the
test-retest reproducibility (i.e. spatial cross correlations between re-
peated sessions of the same condition) was compared between the
resting state and the task state. Specifically, after pairing the ICA
components between session 1 and session 2 of either the resting state
or the task state as aforementioned, the pairwise correlation coeffi-
cients were transformed into z scores. The z scores were compared
between the two states, and the significance of their differences was
evaluated by using a two-sample independent t-test with the signifi-
cance level at 0.05.

We further compared the WM-fMRI ICA maps in the resting state
with those in the task state. Specifically, we calculated the spatial cross
correlations between every component in the resting state and every
component in the task state. Then, individual components in the
resting state were optimally paired to those in the task state to
maximize the sum of cross correlations between all paired components.
After pairing, the pair-wise cross correlations were further tested for
statistical significance. To calculate the p-value from the correlation
coefficient, we used an approximate estimate of the spatial degree of
freedom (DOF), as previously described elsewhere (Smith et al., 2009).
The voxels were not independent samples due to spatial smoothing. For
a conservative approximation, we considered independent samples as
larger (than a voxel) cubes that included five voxels in each direction,
given that the voxel size is 3 mm and the smoothing filter has
FWHM=6 mm. For a total of 7990 voxels in WM, this approximation
yielded an estimated DOF of 64. To be even more conservative, we used
DOF of 50 to account for other potential spatial dependency in data
acquisition or processing. Although seemingly arbitrary, the above
procedure yielded a reasonable approximate of the spatial degree of the
freedom.

Functional relations between WM and GM networks

Furthermore, we assessed the functional relationships between WM
and GM networks at rest or during task. For this purpose, we first
identified a number of functional networks within the cortical gray
matter during the resting or task state. Specifically, GM-fMRI data
were concatenated across all sessions from all subjects in the resting or
task state. For either state, ICA was applied to the concatenated data to
produce 70 spatially independent components, among which ~45
cortical networks were recognizable as previously reported resting
state networks (Shirer et al., 2012), and retained for subsequent
analyses.

We evaluated the temporal cross correlations between ICA compo-
nents in WM and those in GM. The activity time series of every WM
and GM component was extracted from each of the 22 sessions
separately for the resting state and the task state. For every session
of the resting or task state, temporal cross correlations were calculated
between every GM component and every WM component, and then
transformed to z scores. To test the significance of the cross correlation,
the average z score was compared against zero by performing one-
sample t-test to every pair of GM and WM components (p < 0.05,
DOF=21).

Comparison with diffusion MRI

For both resting-state and task conditions, we thresholded the
spatial ICA maps to delineate the shapes of WM structures revealed in
individual components using the method described in Beckmann and
Smith (2004). Briefly, we first calculated the z-statistic for each voxel
and each ICA map by dividing the ICA maps by the estimated standard
deviations of the voxel-wise residuals. We further modeled the null
distribution of each z-statistic map with a mixture of two Gaussian
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distributions (i.e. Gaussian Mixture Model (GMM)), and then calcu-
lated the voxel-wise posterior probability based on the estimated GMM.
We then thresholded the ICA maps according to the voxel-wise
posterior probability, which was set to 0.6.

For each condition, we then used the thresholded ICA maps to
create a set of WM structures. Such structures, obtained with WM-
fMRI in the resting or task state, were visualized in the open-source 3D
Slicer toolkit (http://www.slicer.org) (Fedorov et al., 2012), and were
compared with a diffusion tensor imaging atlas, the ICBM-DTI-81
white-matter labels atlas (Mori et al., 2008; Oishi et al., 2008).

Results

Spatially independent components of resting-state WM fMRI signals

We explored the spatiotemporal patterns of WM-fMRI data in the
resting state by using ICA. 70 spatially independent components were
extracted from all WM voxel time series, after data were temporally
standardized and concatenated across all subjects and separately for
the two repeated resting-state sessions (referred to as session 1 and
session 2). Components from the two sessions were optimally matched
into distinct pairs based on the spatial cross correlation between each
component from session 1 and its corresponding component from
session 2. This pair-wise cross-correlation provided the measure of
intra-subject reproducibility for each component. Twenty-eight out of
the 70 components were found to exhibit relatively high intra-subject
reproducibility ( r =0.4028 ± 0.0276) and were paired between the two
repeated sessions. Fig. 1 shows the spatial patterns of five example

components that were found to be reproducible between session 1
(Fig. 1, left) and session 2 (Fig. 1, middle). Many of the reproducible
components appeared to be cluster-like (or non-fiber-like), showing
spatial distributions confined to focal regions in WM (e.g. Fig. 1 IC 1
and IC 6). In contrast, some components were readily observed as a
fiber-like distribution over a long distance, as in the optic radiations
(e.g. Fig. 1, IC 2 and IC 13) and the corpus callosum (e.g. Fig. 1 IC 8).

We discarded components as “noise” that were spatially incon-
sistent between the two repeated sessions in order to improve the SNR
of WM-fMRI data. The discarded components had either relatively
lower reproducibility ( r =0.1879 ± 0.0147), or spatially non-specific
distribution most likely due to artifacts. Thus, we attributed the 28
reproducible components to the “signals” likely of neural origin, and
attributed the 42 non-reproducible components to “noise”. Such
“signal” vs. “noise” components accounted for 33.98% and 66.02% of
the variance in WM-fMRI, respectively.

After excluding all noise/artifact components, the signal compo-
nents were reassembled to give rise to presumably de-noised WM-
fMRI data. The de-noised data were then concatenated across the two
resting-state sessions, and further decomposed into 31 spatially
independent components for subsequent analyses. Here, a buffer (+3
ICs) was provided to account for the variation between the two
sessions. Among the 31 components, two components were not
consistent to the spatial maps produced by ICA in either session 1 or
session 2; they were further discarded, leaving a total of 29 components
for subsequent analyses. Some example components extracted from the
de-noised data are shown in Fig. 1 (right). All of the 29 components in
the resting-state are shown in Fig. 2.A.

Fig. 1. Reproducibility. A sample of reproducible resting-state components from Session 1 to Session 2, along with the corresponding de-noised components that consisted of
information from both sessions. The z-coordinate (mm) of the position of each axial image is shown in the lower right corner. IC #8 corresponds to the posterior corpus callosum
(splenium). IC #1 corresponds to the right forceps minor. IC #6 corresponds to part of the cingulum. IC #2 corresponds to a part of the optic radiations. IC #13 also corresponds to a
part of the optic radiations.
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Fig. 2. Hierarchical clustering of WM ICs in the resting state. A. 29 resting-state components were obtained after de-noising. B. The dendrogram used in the hierarchical clustering (top)
with the corresponding temporal correlation values between WM ICs. C. Two portions of the left optic radiation were first clustered together, followed by clustering with a portion of the
right optic radiation. For all axial slices in A and C, the z-coordinate (mm) is shown in the lower right corner.
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Hierarchical organization of WM-fMRI components

We assessed the temporal relationships between different compo-
nents of the de-noised WM-fMRI data. These components, although
spatially independent, were temporally correlated with each other to a
varying degree, with the absolute correlation coefficients ranging from
0 to 0.27 (Fig. 2B, bottom). These temporal cross-correlations were
used to progressively merge the individual components into a hier-
archical organization based on hierarchical clustering (Fig. 2B, top).
For example, bilateral optic radiations emerged from progressively
merging multiple ICs: two adjacent ICs were first grouped into a
unilateral fiber bundle connecting LGN to V1, which were then paired
with the homologous fiber bundle from the opposite hemisphere
(Fig. 2C). Similarly, adjacent segments in the corona radiata (Fig. 2.A
– IC 17 and IC 28) were clustered to construct the overall fiber bundle
(Fig. 2B). For comparison, we also applied the same hierarchical
clustering analysis to cortical networks. Results showed that cortical
networks were more tightly correlated and clustered than the white-
matter components (Fig. S1).

Spatiotemporal structure of WM-fMRI during natural vision

Following this result, we asked whether the above intrinsic patterns
and the hierarchical structure of WM-fMRI signals were preserved
during complex, dynamic, and realistic visual experiences. To address
this question, we analyzed the WM-fMRI data during naturalistic visual
stimulation using the same method applied in the resting state. Similar
to the test-retest reproducibility evaluated for the resting-state compo-
nents (Fig. 3A, left), some ICA components were reproducible across
the two repeated movie stimulation sessions (Fig. 3A, middle). Twenty-
seven components were reproducible ( r =0.5867 ± 0.0323) and were
kept as signals, while other components was attributed to noise or
artifacts and thus removed. The signal and noise/artifact components
accounted for 34.69% and 65.31% of the variance in WM-fMRI,
respectively, which was comparable to that of those in the resting
state. Overall, the components during the visual task were more
reproducible than those in the resting state (Fig. 3A, right) (p <
0.0001, two-sample t-test). As done for the resting state, we also
concatenated the de-noised WM-fMRI data across the two movie
sessions, and decomposed the concatenated data into 30 spatially
independent components. Two components were not consistent with
any of the components produced by ICA in either session 1 or session
2; the other 28 components were kept for subsequent analyses.

The task-state WM ICs mostly resembled those in the resting state
(Fig. 3B). Twenty-one out of the 28 components observed during the
visual task were also observed in the resting state, giving rise to one-to-
one matched pairs with significantly correlated spatial patterns (|r|
=0.5306 ± 0.0298, p < 10−5 to p=0.0207, uncorrected). For example, IC
3, IC 10, IC 27 were three ICA maps in the task state that were matched
to IC 8, IC 14, IC 6 in the resting state (Fig. 3B). Four components were
not matched (|r|=0.0868 ± 0.0182, p=0.3208 to p=0.8611, uncor-
rected) in a one-to-one manner. For an example, see Fig. 3B, IC
1(task) versus IC 13 (rest).

To further characterize the consistency (and inconsistency) between
the resting and task states, we compared the hierarchical relationships
between spatially independent components in these two states. See
Fig. 4A for all 28 components in the task state. The independent
components that were matched between the task and resting states
were also found to bear a similar hierarchical organization in both
states (Fig. 4D). For example, the corona radiata began to emerge from
clustering its three segments (IC 8, IC 23, and IC 17) through two
hierarchical steps (Fig. 4B). Among the components that were not
matched between the task and resting states, a single component (IC 1)
in the task state was found to encompass the bilateral optic radiations
connecting LGN and V1 (Fig. 4C). This observation, that the bilateral
optic radiations manifested themselves as a single component, suggests

that activity fluctuations within the optic radiations were more
coherent during visual stimulation than in the resting state, during
which the optic radiations were segregated into multiple pieces
(Fig. 2C). Also note that during the task, the optic radiations (IC 1)
were further clustered with a component corresponding to an anterior
segment in the right inferior longitudinal fascicular (ILF) (IC 13),
which is located near and posterior to the optic radiations (see Fig. 4A
and D) and contains connections between associative visual areas and
anterior temporal structures (Catani et al., 2003).

While the above results were obtained with group ICA, we also used
dual regression to obtain the corresponding ICA maps from individual
subjects. For both the resting state and the task state, the individual-
level ICA maps were generally consistent with the group-level ICA
maps (Fig. 5).

Interactions between WM and GM networks

To further explore the functional role of the coherent signal within
the optic radiations, we evaluated its coupling with cortical visual
networks in GM by computing their temporal cross correlations. For
this purpose, 70 spatially independent components were extracted
from all GM voxel time series after concatenating every session and
every subject for the visual task; among those, 47 components were
recognizable as established intrinsic functional networks (Shirer et al.,
2012). We identified four cortical networks that had the highest (and
significant) positive cross-correlations with the optic radiations
(p=0.01–0.047, one-sample t-test, uncorrected). As shown in Fig. 6A,
all of these four networks were parts of the visual system: namely, the
primary visual area (IC 4), higher order visual networks (IC 1 and IC
3), and a medial visual network (IC 2). These areas are involved in
natural visual processing, as shown in previous studies (Hasson et al.,
2004).

We performed this analysis on the resting-state data to assess the
temporal relationships between the optic radiations and intrinsic
cortical visual networks in the absence of the visual task. As shown
in Fig. S2, we identified four cortical networks in the resting state as the
counterparts to those vision-related components shown in Fig. 6A. The
optic radiations resting-state component was formed from a sum of the
three optic radiations components (IC 11, IC 13, and IC 2) shown in
Fig. 2C; the time series was formed from the mean of those of the three
components. However, unlike the task state (Fig. 6B, left), the resting
state did not exhibit any significant temporal cross correlations
between the optic radiations and cortical visual networks (p=0.1003–
0.9526, uncorrected) (Fig. 6B, right).

However, head motion was a potential confounding factor to the
above findings. We found that the head motion parameters (transla-
tions and rotations) exhibited, on average, 2.3 and 3.5 times greater
standard deviations in the resting state than in the task state,
respectively. This difference was significant (p < 0.00001, Wilcoxon
rank sum test). Despite the significantly different head motion between
the two states, this difference was less likely to account for the spatially
and functionally specific findings about WM components and their
interactions with GM networks. We noted that the time courses of the
WM and GM components of interest did not show the slow drift or
abrupt changes that characterized the head motion. In addition, we
addressed the concern that head movements in the task condition
might be task related; i.e. that common movements between sessions
would occur at particular moments in the movie at particularly
suspenseful or surprising points. To effectively capture sudden move-
ments while ignoring slow drifts, we evaluated the time derivative of
every motion-correction parameter and calculated its correlation
between the repeated movie sessions within each subject. Only margin-
al correlations were found (r < 0.08) for all six motion parameters.
Therefore, head motion was not a confound of major concern.
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Fig. 3. Reproducibility of ICA components. A. Reproducibility within the resting state or the task state. The spatial maps between session 1 and session 2 were optimally matched into
pairs sorted in descending order of their spatial cross correlations. The matrices show the spatial correlations of one session's 70 components to the other session's 70 components, for
either the resting state (left) or the movie task state (middle). The diagonal elements are the spatial correlations between individually ‘paired’ components. The ‘paired’ components
generated by the movie task demonstrated stronger spatial correlations with one another than in the resting state (right). B. Rest and task comparison of WM components. Four example
pairs of components obtained from resting-state (right) and task-state (left) are shown. While the first row shows notably different maps, the other three rows show similar patterns. The
z-coordinate (mm) of the position of each axial image is shown in the lower right corner.
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Fig. 4. Task-state WM activity patterns. A. 28 task components were obtained after de-noising. The component number is shown in the top left corner. B. The dendrogram used in
hierarchical clustering (top) with the corresponding temporal correlation values between WM ICs during the naturalistic visual task. C. Hierarchical clustering of task-unrelated
components – (right anterior corona radiata). Two portions of a single tract were paired together, which were then paired with a more dorsal portion in the opposite hemisphere. D.
Task-related component. One component shows the optic radiations emanating from the LGN. For all axial slices in A, C, and D, the z-coordinate (mm) is shown in the lower right
corner.
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Fig. 5. ICA maps from individual subjects obtained through dual regression in the resting-state (A) and during the task (B). For each state, the left-most column shows the group level
map; the right columns show the maps obtained from individual subjects using this method. The z-coordinate (mm) is shown in the lower right corner.
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Relationships with white-matter structure

Finally, we asked whether the ICA maps obtained with WM-fMRI in
the resting state and the task state were distributed along the axonal
fiber tracts. For this purpose, we compared the thresholded ICA maps
with white-matter tracts based on diffusion MRI using the ICBM-DTI-
81 white-matter labels atlas (Mori et al., 2008; Oishi et al., 2008)
(Fig. 7). Qualitatively, for both the resting and task states, most of the
ICA components of WM-fMRI data covered only segments of individual
fiber tracts, without extending the full tract length. However, some
components appeared to align well with major fiber bundles (e.g. the
optic radiations, the corpus callosum, and the internal capsule). It

suggests a complex structure-function relationship in the white matter,
when observed with white-matter diffusion and functional MRI.

Discussion

Using data-driven analysis methods, we examined the spatiotem-
poral characteristics of fMRI time series in the cerebral white matter
both in the resting state and during naturalistic visual perception. The
results led to the following findings: 1) spatially independent compo-
nents of resting-state fMRI signals in WM revealed reproducible either
cluster-like or fiber-like structures with synchronized spontaneous
fluctuations within each structure; 2) different components were

Fig. 6. Functional relationships between WM and GM networks. A. During natural visual perception, the optic radiations (OR) in WM were temporally correlated with four cortical
visual networks in GM (ICs #1, #2, #3, and #4). Shown below each connection is the average z-transformed cross correlation between the corresponding WM and GM regions. The z-
coordinate (mm) is shown in the lower right corner. B. Such temporal correlations were statistically significant in the task state (left), but not in the resting state (right). These functional
connectivity relationships are presented as OR-1 (i.e. optic radiations cross-correlation with cortical visual IC #1), OR-2, OR-3, and OR-4. The bar height indicates the average z-
transformed cross correlation. The error bar indicates the standard error of the mean.
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temporally correlated in a hierarchical manner, leading us to report the
intrinsic hierarchical functional organization of WM fiber tracts; 3)
such intrinsic structures and their hierarchical organization were
mostly preserved during naturalistic visual stimulation; 4) however, a
subset of these structures that were engaged in visual processing
showed stronger synchronization within themselves and significant
interactions with cortical visual networks. Therefore, fMRI signals in
WM, like those in GM, may be utilized to uncover the intrinsic
functional organization of WM, and to map axonal pathways that
support neural signaling between cortical networks during complex
tasks. The WM-fMRI methods as reported here and elsewhere (e.g.
Gawryluk et al., 2014; Ding et al., 2016), as well as functional DTI
methods (Mandl et al., 2008; Spees et al., 2013), may begin to uncover
WM functionality in health and disease.

Spontaneous WM-fMRI signals reflect the hierarchical organization
of axonal fibers

Spatial ICA has been widely used to map large-scale resting state
networks (RSN) (Beckmann and Smith, 2004; Calhoun et al., 2008),
especially when one seeks a relatively lower number of components.
For a large-scale RSN that typically includes multiple discrete GM
regions (e.g. the default-mode network), those regions are temporally
correlated (Van Dijk et al., 2010) and structurally inter-connected
through axonal fibers (Greicius et al., 2009). In other words, such
large-scale RSNs have corresponding structural substrates to support
neural signaling between different GM regions in the RSN (van den
Heuvel and Sporns, 2013). It is thus tempting to hypothesize that the

WM substrate underlying a GM network carries synchronized activity
within itself, whereas the WM substrates underlying different GM
networks are temporally distinct in order to support their different
functions. If this hypothesis were true, one would expect to be able to
use ICA to decompose resting-state WM-fMRI signals into spatially
independent and temporally distinct WM sub-systems that consist of
axonal fibers connecting regions comprising individual GM networks.

However, spatially independent components of resting-state WM-
fMRI signals did not appear as long-range fiber tracts; instead, they were
mostly shown as cluster-like (or non-fiber-like) patterns, appearing as
local segments of fiber tracts with a varying length. Nevertheless, these
seemingly fragmented components were not isolated from each other,
but instead exhibited varying levels of temporal cross correlations. These
fragments tended to be more correlated if they were parts of the same
fiber tract; combining these correlated components gave rise to the entire
fiber tract; the combined fiber tract in one hemisphere tended to be
correlated with the homologous fiber tract in the opposite hemisphere.
As such, functional networks of WM fiber tracts did not readily result
from a single-level decomposition of the WM-fMRI signals; instead, they
emerged progressively as short segments of fiber tracts were combined
into a hierarchical organization based on their temporal relations.

The cluster-like appearance and hierarchical organization of the
WM-fMRI ICA components might be counter-intuitive given what is
known about neuronal structure. While the dendrites and the soma of a
neuron occupy a tiny volume in GM, its axon runs a long distance in
WM for relaying neuronal spikes. Different locations along the axon
carry the same functional information, and thus are expected to be
temporally synchronized along a long and continuous pathway in the

Fig. 7. Structural vs. functional parcellation of the white matter. The first row shows the white-matter parcellation based on diffusion MRI (JHU ICBM-DTI-81 atlas). The second and
third rows show the white-matter structures delineated from the thresholded ICA maps obtained from resting state fMRI or natural-vision task fMRI data, respectively.
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fMRI time scale. However, the spatial resolution of fMRI is insufficient
to resolve axons. An fMRI voxel samples a cubic piece of a large axonal
bundle, containing a mixture of neuronal activity along every axon in
the bundle. The fact that axons are routed and bundled differently at
different voxels is expected to cause discontinuity in the spatial
patterns of temporal synchronization in the fMRI signal. We speculate
that this discontinuity is a major reason why ICA applied to coarsely
sampled WM-fMRI data tend to reveal segments of fiber tracts as
opposed to the intact long-range fiber tracts.

Also contributing to the discontinuity and segregation of the WM-
fMRI signal is the orientation-dependence of T2

*-sensitive MRI in WM.
Magnetic susceptibility contrast in WM is anisotropic due to the highly
oriented water compartments of the axonal bundles (Lee et al., 2011;
Duyn, 2013). This may in part explain why regions with higher
densities of parallel axons, such as the corpus callosum, are more
reliably detected in previous WM-fMRI activation studies.
Interestingly, Ding et al. showed that the tensor of local temporal
correlations in WM-fMRI signals demonstrated similar orientations as
those observed with diffusion MRI (Ding et al., 2013), and could be
specifically altered by tasks (Ding et al., 2016). Combining local and
global correlation structures of WM-fMRI is a potentially promising
direction for future studies.

Natural-vision task reshapes the WM functional organization

It has been increasingly recognized that spontaneously emerging
network patterns are functionally relevant since such activity patterns
are well preserved from the resting state to various task states (Kenet
et al., 2003; Smith et al., 2009; Wilf et al., 2015). Findings from the
present study further extend this conclusion from the gray matter to
the white matter. During naturalistic visual stimulation, the WM-fMRI
signals exhibited reproducible independent components with similar
spatial distributions as those observed in the resting state. Therefore,
like those in the cortex, resting-state fMRI patterns within WM also
reflect intrinsic functional units that are recruited to perform complex
tasks. Although intrinsic functional structures in WM were preserved
during the naturalistic visual task, the task enhanced the temporal
synchronization within the task-related WM structures, as well as
between the task-related WM structures and GM networks. The former
is supported by the finding that bilateral visual pathways emerge as a
single component, as opposed to the multiple hierarchical components
found during the resting state; this implies that a stronger level of
synchronization between the left and right optic radiations occur along
with the tract emanating from LGN. The latter is supported by the
finding that the WM component showing optic radiations is signifi-
cantly correlated with several cortical visual networks during the task,
but not during resting-state (also discussed later).

Previous studies have shown that natural vision evokes reliable
cortical fMRI responses (Hasson et al., 2004; Jääskeläinen et al., 2008)
and spiking activity (Belitski et al., 2008; McMahon et al., 2015) within
and across subjects. Interestingly, Mukamel et al. (2005) have shown
significant correlations between spiking activity and fMRI response
between different subjects watching the same movie. Furthermore,
Astafiev et al. (2016) have demonstrated a link between BOLD fMRI in
the MT+/LO and FA (measured through DTI) in the left optic radiation
in mTBI patients. Extrapolating these studies and the findings from
this study, we speculate that natural visual perception induces reliable
and synchronized WM activity, which gives rise to spiking activity as
the direct effect, and the fMRI signal as the secondary indirect effect.
While this speculation is reasonable, it remains to be confirmed, ideally
with simultaneous white-matter neural recording and fMRI imaging.

Biophysical and physiological origins of WM-fMRI

Here, the so-called “fMRI” signal refers to the temporal variation of
voxel intensity in gradient-echo echo-planar imaging (GE-EPI) images

that primarily carry the T2
*-weighted contrast. Multiple sources con-

tribute to this signal, but those sources may or may not bear any
relationship to underlying neural activity (Bianciardi et al., 2009). For
the signals from gray-matter voxels, the source related to neural
activity is blood oxygenation level dependent (BOLD) (Ogawa et al.,
1990). The BOLD fluctuation reflects the combined effects of cerebral
blood flow (CBF), blood volume (CBV), and the metabolic rate of
oxygen (CMRO2) (Buxton et al., 1998). Such hemodynamic and
metabolic changes are coupled to neural activity in terms of both
synaptic input and spiking output (Logothetis et al., 2001; Smith et al.,
2002). While the basis of fMRI is complex, as it is a topic of active
research and debate (Leopold and Maier, 2012), extra caution should
be exercised when interpreting WM-fMRI.

Is the WM-fMRI signal BOLD? Despite a lower density of vascu-
lature, the white matter has the vascular capacity for MRI-detectable
hemodynamic changes (Gawryluk et al., 2014). Two defining features
of the BOLD mechanism, cerebrovascular reactivity (Ogawa et al.,
1990) and echo-time dependence (Kundu et al., 2012), have been both
demonstrated for the WM-fMRI signal. The WM vasculature dilates in
response to hypercapnia, showing detectable CBF and BOLD responses
in the white matter, although the responses have a lower magnitude
than in the gray matter (Rostrup et al., 2000; Thomas et al., 2014). The
fluctuation and correlation of WM-fMRI signals at rest vary with
different echo times, reaching their maxima at a similar echo time as
the T2

* in the gray matter (Ding et al., 2016). In addition, metabolic
changes to neuromodulation are observable in the white matter (Weber
et al., 2002). Astrocytes, which mediate neurovascular coupling in gray
matter (Petzold and Murthy 2011), are also present in white matter
(Waxman and Ritchie, 1993; Rash, 2010). Therefore, all of the
necessary machinery for neurometabolic and neurovascular coupling
are generally in place in the white matter to give rise to detectable
BOLD signals.

If it is BOLD, does the WM-fMRI signal report neural activity? WM-
fMRI signals show task-dependent activations as reviewed in
(Gawryluk et al., 2014). Their correlational structures are reorganized
from the resting state to the task state, as shown in this study, as well as
in (Ding et al., 2016). Therefore, the WM-fMRI signals are functionally
relevant, and hence report, at least in part, neural activity in the white
matter. However, it is not trivial and largely speculative to posit the
specific type of neural activity that is coupled with the WM-fMRI
signal. The BOLD signal is an indirect measure of neural activity
(Logothetis and Wandell, 2004). In the gray matter, the neuronal origin
of the BOLD signal may be synaptic activity observed with local field
potential (Logothetis et al., 2001; Viswanathan and Freeman, 2007), or
spiking activity observed with single or multi-unit activity (Smith et al.,
2002; Mukamel et al., 2005). Synaptic activity (neuronal input) and
spiking activity (neuronal output) are inherently linked with one
another most of the time; their individual couplings with the BOLD
signal are in fact comparable (Logothetis et al., 2001). When they have
been dissociated under special experimental conditions, the BOLD
signal has been found to be more coupled with synaptic activity
(Viswanathan and Freeman, 2007; Rauch et al., 2008), although
counter-examples have also been demonstrated (Pelled et al., 2009).
As such, it is still not quantitatively understood which specific types of
neuronal activity drive BOLD-fMRI. It is at least plausible that spiking
activity is partly coupled with the BOLD signal, even in the gray matter.
In the white matter, neuronal activity is mostly spiking activity
propagating along the axon, with little synaptic activity (Gawryluk
et al., 2014). This leads us to hypothesize that the WM-fMRI signal is
BOLD and indirectly coupled to spiking activity. Nevertheless, this
hypothesis is speculative and remains to be tested, while the signaling
pathway that potentially links spiking activity to vasodilation also
needs to be elucidated. To the best of our knowledge, there is no study
directly addressing the relationship between spiking and fMRI signals
in the white matter.
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Methodological considerations

We did not observe significant interactions between WM and GM at
rest, but during task (Fig. 6B). A possible explanation for this
observation was that the task might drive greater WM activity fluctua-
tions, and thus a higher SNR. We did not expect the difference in SNR
as a major contributor, because the fraction of the data variance
explained by the signal versus noise components was comparable for
the task state and the resting-state. Given future improvement in the
SNR of WM-fMRI, we anticipate that significant WM-GM correlations
may also be observable even at rest, while tasks would further
strengthen such correlations.

As mentioned in Introduction, the separation of the WM voxels
from the GM voxels is an essential pre-processing step in this work in
order to deal with the different dynamic range and correlational
structure in WM and GM. When we performed a whole-brain ICA
analysis on resting-state fMRI data without WM-GM separation (the
number components was 70), most of the components were gray-
matter networks, as previously shown in numerous resting-state fMRI
studies. There were a few components for which the spatial distribu-
tions were predominantly in the white matter, as opposed tothe gray
matter, as shown in Fig. S4. Given the very small number of white-
matter-like components, the components tended to capture the pat-
terns with the strongest degree of coherence (e.g. the global white-
matter pattern, the optic radiations, and the corpus callosum). Such a
whole-brain analysis did not allow for finer-grained pattern analysis
and hierarchical clustering in the white matter, as enabled by only
looking at the white-matter voxels.

Spatial smoothing was also helpful to improve the SNR of WM-
fMRI. When we performed the white-matter ICA analysis on data
without spatial smoothing, some of the general features were still
observed (Fig. S3). However, without spatial smoothing, the overall
reproducibility of the ICA maps was lower (Fig. S3A). Given the same
criteria of selecting signal versus noise ICA components, we were only
able to identify less than 10 “signal” components in the white matter,
making the de-noising process more challenging. However, when we
retained an identical number of components, we found qualitatively
similar results; for example, components showing optic tracts appeared
unilateral in the resting-state (Fig. S3B), but bilateral in the task state
(Fig. S3C). Thus, the spatial smoothing is a helpful pre-processing step,
but is not as essential as the WM-GM separation.

Head motion is generally a concern in fMRI (Van Dijk et al., 2012)
and is likely a confounding factor in our WM-fMRI findings. In this
study, we found that the resting-state sessions had significantly more
head motion than the task state, likely because the engagement in the
natural movie helped the subjects restrain their heads. Although we
could not rule out the potential effects of head motion, we considered it
as a minor confound to the WM-fMRI signals for the following reasons.
First, the effects of head motion usually occur at the borders of different
tissues (e.g. GM versus WM). As mentioned before, we used a
conservative WM mask so as to avoid voxels around the GM-WM
borders. Second, most of the head motion parameters varied in time as
slow drifts, which were discounted as the WM-fMRI signals were
detrended (by removing up to 3rd order polynomial functions).
Furthermore, the ICs kept in the ICA-based de-noising procedure were
consistent across sessions and subjects, unlikely to be attributable to
head motions. The time courses of the “signal” components also did not
show either any signal drift or any abrupt change, which typically arise
from head motion. Finally, it is worth noting that, overall, our results
demonstrate that head movements occurring during the task are
unlikely to be task-related.
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