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Abstract  
Inspired by predictive coding in neuroscience, we 
designed a bi-directional and recurrent neural net, 
namely deep predictive coding networks (PCN). 
It uses convolutional layers in both feedforward 
and feedback networks, and recurrent connections 
within each layer. Feedback connections from a 
higher layer carry the prediction of its lower-layer 
representation; feedforward connections carry the 
prediction errors to its higher-layer. Given image 
input, PCN runs recursive cycles of bottom-up 
and top-down computation to update its internal 
representations to reduce the difference between 
bottom-up input and top-down prediction at every 
layer. After multiple cycles of recursive updating, 
the representation is used for image classification. 
In training, the classification error 
backpropagates across layers and in time. With 
benchmark data (CIFAR-10/100, SVHN, and 
MNIST), PCN was found to always outperform 
its feedforward-only counterpart: a model without 
any mechanism for recurrent dynamics, and its 
performance tended to improve given more 
cycles of computation over time. In short, PCN 
reuses a single architecture to recursively run 
bottom-up and top-down process, enabling an 
increasingly longer cascade of non-linear 
transformation. For image classification, PCN 
refines its representation over time towards more 
accurate and definitive recognition. 

1.  Introduction 

Convolutional neural networks (CNN) have achieved great 
success in image recognition. Classical CNN models, e.g. 
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & 
Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), 
ResNet (He et al., 2016b), SENets (Hu et al., 2017), 
NASNet (Zoph et al., 2017), have improved the 
performance in computer vision, while these models 
generally become deeper and wider by using more layers 
(Simonyan & Zisserman, 2014; Szegedy et al., 2015; He et 
al., 2016b) or/and filters (Szegedy et al., 2015; Zagoruyko 
& Komodakis, 2016). Despite various ways of 
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architectural reconfiguration, these models all scale up 
from the same principle of computation: extracting image 
features by a feedforward pass through stacks of 
convolutional layers.  

Although it is inspired by hierarchical processing in 
biological visual systems (Hubel & Wiesel, 1968), CNN 
differs from the brain in many aspects. Unlike CNN, the 
brain achieves robust visual perception by using 
feedforward, feedback and recurrent connections 
(Felleman & Van, 1991; Sporns & Zwi, 2004). 
Information is processed not only through a bottom-up 
pathway running from lower to higher visual areas, but 
also through a top-down pathway running in the opposite 
direction. Such bi-directional processes enable humans to 
perform a wide range of visual tasks, including object 
recognition. For human vision, feedforward processing is 
essential to rapid recognition (Serre et al., 2007; DiCarlo et 
al., 2012), e.g. when visual input is too brief to recruit 
feedback and recurrent processing (Thorpe et al., 1996). 
However, feedback processing improves object 
recognition and enables cognitive processes to influence 
perception (Logothetis & Sheinberg, 1996; Wyatte et al., 
2014). In neuroscience, the interplay between feedforward 
and feedback processes is described by hierarchical 
predictive coding (Rao & Ballard, 1999; Friston & Kiebel, 
2009; George & Hawkins, 2009; Bastos et al., 2012; Clark, 
2013; Hohwy, 2013). It states that the feedback 
connections from a higher visual area to a lower visual area 
carry predictions of lower-level neural activities; 
feedforward connections carry the errors between the 
predictions and the actual lower-level activities. As a 
result, the brain dynamically updates its representations to 
progressively refine its perceptual and behavioral 
decisions.  

Inspired by this brain theory, we designed a bi-directional 
and recurrent neural net (i.e. PCN). Given image input to 
PCN, it runs recursive cycles of bottom-up and top-down 
computation to update its internal representations towards 
minimization of the residual error between bottom-up 
input and top-down prediction at every layer in the 
network. Using predictive coding as its computational 
mechanism, PCN differs from feedforward-only CNNs 
that currently dominate computer vision. It is a model with 
dynamics that uses recursive and bi-directional 
computation to extract better representations of the input 
such that the input is predictable by the extracted 
representation. When it is unfolded in time, PCN runs a 
longer cascade of nonlinear transformations by running 
more cycles of bottom-up and top-down computation 
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through the same architecture without adding more layers, 
units, or connections.     

To explore its value, we designed PCN with convolutional 
layers stacked in both feedforward and feedback 
directions. We trained and tested PCN for image 
classification with benchmark datasets: CIFAR-10 
(Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky & 
Hinton, 2009), SVHN (Netzer et al., 2011), and MNIST 
(LeCun et al., 1998). Our focus was to explore the intrinsic 
advantages of PCN over its feedforward-only counterpart: 
a plain CNN model without feedback connection or any 
mechanism for recurrent dynamics. It turned out that PCN 
always outperformed the plain CNN model, and its 
accuracy tended to improve given more cycles of 
computation over time. Relative to the classical models, 
PCN yielded competitive performance in all benchmark 
tests despite much less layers in PCN. As we did not 
attempt to optimize the performance by trying many 
learning parameters or model architectures, there is much 
room for future studies to further improve or extend the 
model on the basis of a similar notion. 

2.  Related Work 

Current progress in computer vision is more driven by 
engineering goals as opposed to inspiration from the brain 
(Rawat & Wang, 2017). Findings from recent studies 
demonstrate that deep convolutional neural networks use 
representations similar to those in the brain 
(Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 
2014; Güçlü & van Gerven, 2015; Cichy et al., 2016; 
Eickenberg et al., 2017; Wen et al., 2017). However, many 
gaps are yet to be filled to bridge biological and artificial 
visual systems. A biologically plausible model of vision 
should take into account feedback and recurrent 
connections, which are abundant in primate brains 
(Felleman & Van, 1991; Sporns & Zwi, 2004). A limited 
number of studies have taken on this direction from the 
perspective of computational neuroscience or computer 
vision.  

O'Reilly et al. demonstrated that feedback connections 
could enable top-down representations to fill incomplete 
bottom-up representations to improve recognition of 
partially occluded objects (O'Reilly et al., 2013). 
Exploiting a similar idea, Spoerer et al. built a recurrent 
CNN (with 2 hidden layers) using feedforward, feedback, 
and lateral connections to enable recurrent processing that 
dynamically updated the internal representations as the 
sum of bottom-up, top-down, and lateral contributions 
(Spoerer et al., 2017). Trained and tested with synthesized 
images of digits, their recurrent CNN yielded more robust 
recognition of digits in cluttered and occluded images. 
However, that model did not embody an explicit 
computational mechanism to ensure recurrent processing 
dynamics to converge over time. Although compelling 
from the neuroscience perspective, the models in the above 
studies were relatively simple and shallow, and they were 
not tested in naturalistic visual scenarios of primary 
interest to computer vision.  

In computer vision, Liang et al. added recurrent 
connections into each layer of a feedforward CNN to allow 
the activity of each unit to be modulated by activities of its 
neighboring units within the same layer (Liang & Hu, 
2015). Although it was inspired by contextual modulation 
in biological vision, this model did not account for 
feedback connections, which are abundant in the brain. 
Stollenga et al. added feedback connections to a trained 
CNN to enable attentional selection of filters for the model 
to achieve better object classification (Stollenga et al., 
2014). Recently, Canziani et al. built a bi-directional 
model with a feedforward discriminant subnet, a feedback 
generative subnet, as well as lateral connections to bridge 
the two subnets; training the model for video prediction 
helped the model yield more stable object recognition 
given video input (Canziani & Culurciello, 2017). These 
studies described above highlight the roles of feedback 
and/or recurrent processes in computing or learning better 
representations than models with only feedforward 
processes. What remains unresolved is a biologically 
plausible mechanism that allows feedforward, feedback, 
and recurrent processes to interact with one another in 
order for the model to manifest internal dynamics that 
support various learning objectives.  

In this regard, we may seek inspiration from the brain. 
Predictive coding is an influential theory of neural 
processing in vision and beyond (Huang & Rao, 2011; 
Clark, 2013; Hohwy, 2013) as supported by empirical 
evidence (Gómez et al., 2014; Bastos et al., 2015; 
Michalareas et al., 2016; Sedley et al., 2016; van Pelt et al., 
2016). In a seminal paper (Rao & Ballard, 1997), Rao and 
Ballard postulated that the brain learns a hierarchical 
internal model of the visual world. Each level in this model 
attempts to predict the responses at its lower level via 
feedback connections; the error between this prediction 
and the actual response is sent to the higher level via 
feedforward connections. Friston et al. further generalized 
this notion into a unified brain theory for perception and 
action (Friston, 2008). Chalasani et al. used predictive 
coding to train a deep neural net to learn a hierarchy of 
sparse representations of data without supervision 
(Chalasani & Principe, 2013). Lotter et al. explored video 
prediction as an unsupervised learning objective based on 
predictive coding (Lotter et al., 2016); however the model 
trained in this way may not be able to learn sufficiently 
abstract representation to support such tasks as object 
recognition. Spratling et al. explored the use of predictive 
coding for object recognition; however, their model was 
limited a shallow network architecture for much simplified 
scenarios (Spratling, 2017).  

Inspired by but different from models in prior studies (Rao 
& Ballard, 1999; Spratling, 2008, 2017), a hierarchical, 
bidirectional, and recurrent model is proposed and 
implemented herein as a brain-inspired model for 
computer vision. This model operates with the theory of 
predictive coding to generate dynamic internal 
representations by recursive bottom-up and top-down 
computation via feedforward and feedback connections 
across cascaded layers in a deep hierarchy, and recurrent 
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connections to convey information over time within the 
same layer. The internal representations are updated to 
progressively reduce the error of top-down prediction of 
lower-level representations, while the prediction errors are 
conveyed upward to higher levels. To train this network, 
the representations at the highest level, after multiple 
cycles of recursive updating, are used to classify the input 
image. With labeled images, the model parameters are 
trained through backpropagation in time and across layers. 
In this study, we trained and tested such a deep predictive 
coding network (PCN) with several datasets: CIFAR-10, 
CIFAR-100, SVHN, and MNIST. 

3.   Methods 

3.1  Predictive Coding 

Central to the theory of predictive coding is that the brain 
continuously generates top-down predictions of bottom-up 
inputs. The representation at a higher level predicts the 
representation at its lower level. The difference between 
the predicted and actual representation elicits an error of 
prediction, and propagates to the higher level to update its 
representation towards improved prediction. This repeats 
throughout the hierarchy until the errors of prediction 
diminish, or the bottom-up process no longer conveys any 
“new” (or unpredicted) information to update the hidden 
representation. Thus, predictive coding is a computational 
mechanism for the model to recursively update its internal 
representations of an image towards convergence. 

In the following mathematical description of this dynamic 
process in PCN, italic lowercase letters are used as 
symbols for scalars, bold lowercase letters for column 
vectors, and bold uppercase letters for MATRICES. The 
representation at layer 𝑙 and time 𝑡 is denoted as 𝐫$(𝑡). The 
weights of feedforward connections from layer 𝑙-1 to layer 
𝑙  are denoted as 𝐖$*+,$ . The weights of feedback 
connections from layer 𝑙 to layer 𝑙-1 are denoted as 𝐖$,$*+.  

In PCN, the higher-level representation, 𝐫$(𝑡), predicts its 
lower-level representation as 𝐩$*+ 𝑡  via linear weighting 
𝐖$,$*+, as shown in Eq. (1). The prediction error, 𝐞$*+ 𝑡 , 
is the difference between 𝐩$*+ 𝑡  and 𝐫$*+ 𝑡  as in Eq. (2). 

𝐩$*+ 𝑡 = 𝐖$,$*+
0
𝐫$(𝑡)               (1) 

𝐞$*+ 𝑡 = 𝐫$*+ 𝑡 − 	𝐩$*+ t           (2) 

3.1.1  FEEDFORWARD PROCESS 

For the feedforward process, the prediction error at layer 
𝑙-1,	𝐞$-+ 𝑡 , propagates to the upper layer 𝑙 to update its 
representation, 𝐫$(𝑡), so the updated representation reduces 
the prediction error. To minimize 𝐞$-+ 𝑡 , let’s define a 
loss as the sum of the squared errors normalized by the 
variance of the representation, 𝜎$-+

5 , as in Eq. (3). 

𝑒$-+ 𝑡 = +
78-9
: 𝐞$-+ 𝑡

5

5
                  (3) 

The gradient of 𝑒$-+ 𝑡  with respect to 𝐫$(𝑡) is as Eq. (4). 

;<8=9 >
;𝐫8 >

= − 5
78=9
: 𝐖$,$*+𝐞$*+ 𝑡               (4) 

To minimize 𝑒$-+ 𝑡 , 𝐫$(𝑡) is updated by gradient descent 
with an updating rate, 𝛼$, as shown in Eq. (5). 

          𝐫$ 𝑡 + 1 = 𝐫$ 𝑡 − 𝛼$
;<8=9 >
;𝐫8 >

           

																														= 𝐫$ 𝑡 + 5A8
78=9
: 𝐖$,$*+𝐞$*+ 𝑡     (5) 

If the weights of feedback connections are the transpose of 
those of feedforward connections 𝐖$,$*+ = 𝐖$*+,$

0 , the 
update rule in Eq. (5) can be rewritten as a feedforward 
operation, as in Eq. (6).  

𝐫$ 𝑡 + 1 = 𝐫$ 𝑡 + 𝑎$ 𝐖$*+,$
0
𝐞$*+ 𝑡     (6) 

where the last term indicates forwarding the prediction 
error from layer 𝑙-1 to layer 𝑙 to update the representation 
with an updating rate 𝑎$ =

5A8
78=9
: .  

3.1.2  FEEDBACK PROCESS 

For the feedback process, the top-down prediction is used 
to update the representation at layer 𝑙, 𝐫$ 𝑡 , to reduce the 
prediction error 𝐞$ 𝑡 . Similar to feedforward process, the 
error is minimized by gradient descent, where the gradient 
of 𝑒$ 𝑡  with respect to 𝐫$(𝑡)  is as Eq. (7), and 𝐫$ 𝑡  is 
updated with an updating rate 𝛽$ as shown in Eq. (8). 

;<8(>)
;𝐫8 >

= 5
78
: 𝐫$ 𝑡 − 𝐩$ t                      (7) 

  					𝐫$ 𝑡 + 1 = 𝐫$ 𝑡 − 𝛽$
;<8 >
;𝐫8 >

  

          = 1 − 5D8
78
: 𝐫$ 𝑡 + 5D8

78
: 𝐩$ 𝑡        (8) 

Let 𝑏$ =
2𝛽𝑙
𝜎𝑙
2  and Eq. (8) is rewritten as follows. 

𝐫$ 𝑡 + 1 = 1 − 𝑏$ 𝐫$ 𝑡 + 𝑏$𝐩$ 𝑡       (9) 

E. (9) reflects a feedback process that the representation at 
the higher layer, 𝐫$G+(𝑡), generates a top-down prediction, 
𝐩$ 𝑡 , and influences the representation at the lower level, 
𝐫$(𝑡).  

3.1.3  NONLINEARITY 

To add nonlinearity to the above feedforward and feedback 
processes, a nonlinear activation function is applied to the 
output of each convolutional layer (except the input layer, 
i.e. 𝑙 = 0). A rectified linear unit (ReLU) (Nair & Hinton, 
2010) converts Eqs. (6) and (9) to nonlinear processes as 
below. 

Nonlinear feedforward process: 

𝐫$ 𝑡 + 1 = ReLU 𝐫$ 𝑡 + 𝑎$ 𝐖$*+,$
0
𝐞$*+ 𝑡       (10) 

Nonlinear feedback process: 

𝐫$ 𝑡 + 1 = ReLU 1 − 𝑏$ 𝐫$ 𝑡 + 𝑏$𝐩$ 𝑡         (11) 



Deep Predictive Coding Network for Object Recognition 
 

 4 

3.2  Network Architecture  

We implemented this algorithm in several PCNs, all of 
which included convolutional layers stacked in both 
feedforward and feedback directions and recurrent 
connections within each layer as shown in Fig. 1a. These 
PCNs were trained and tested for object recognition with 
four benchmark datasets: CIFAR-10, CIFAR-100, SVHN 
and MNIST. For comparison, several feedforward-only 
CNNs were built with the same architecture as the 
feedforward pathway in corresponding PCNs, and were 
trained and tested with the same datasets. We refer to these 
feedforward-only CNNs as the plain networks, from which 
the PCNs were built upon by adding feedback and recurrent 
connections for dynamic processing.   

Plain CNN Models: The architecture of our plain CNN 
models were similar to the architecture of VGG nets 
(Simonyan and Zisserman, 2014). Briefly, the basic 
architecture included 6 or 8 convolutional layers and 1 
classification layer. All convolutional layers used 3´3 
filters but different numbers of filters, and used rectified 
linear unit (ReLU) as the nonlinear activation function. For 
some layers where the number of filters is doubled, the 
feature maps were reduced by applying 2´2 max-pooling 
with a stride of 2 after convolution. Batch normalization 
(Ioffe and Szegedy, 2015) was not used. The classification 
layer included global average pooling and a 
fully-connected (FC) layer followed by softmax. On the 
basis of this architecture, we built 5 VGG-like models that 
varied in the number of layers and filters, and trained and 
tested the models with 4 datasets. Table 1 summarizes the 
architecture of each model.   

Predictive Coding Network (PCN): Starting from each 
of the plain CNN models, we added feedback and recurrent 
connections to form a corresponding PCN. Fig. 1a shows a 

9-layer PCN, running recursive bottom-up and top-down 
processing based on predictive coding. In PCN, feedback 
connections from one layer to its lower layer were 
constrained to be the transposed convolution (Dumoulin 
and Visin, 2016) which is the transpose of  the feedforward 
counterparts, setting apart our models from those in related 
work on predictive coding (Rao and Ballard, 1999; 
Spratling, 2008, 2017). As such, both feedforward and 
feedback connections encoded spatial filters. The former 
was applied to the errors of the top-down prediction of 
lower-level representation; the latter was applied to 
high-level representation in order to predict the lower-level 
representation. As in the brain, feedforward and feedback 
connections were reciprocal in PCN. The weights of 
feedback connections had the identical dimension as the 
transposed weights of feedforward connections. For layers 
where max-pooling was applied after feedforward 

 

 
Figure 1. a) An example PCN with 9 layers and its feedforward-only CNN (or the plain model). b) Two-layer substructure of PCN. 
Feedback (blue), feedforward (green), and recurrent (black) connections convey the top-down prediction, the bottom-up prediction 
error, and the past information, respectively. c) The dynamic process in the PCN iteratively updates and refines the representation of 
visual input over time. PCN outputs the probability over candidate categories for object recognition. The bar height indicates the 
probability and the red indicates the ground truth. 
 

Table 1. Architectures for PCN. Each column is a model. The 
layers with the same color have the same feature map size.  

CIFAR-10/100	 SVHN/	MNIST	
A	 B	 C	 D	 E	

9	layers	 9	layers	 7	layers	 7	layers	 7	layers	
input	image	

conv3	-64	 conv3	-32	 conv3	-32	 conv3	-32	 conv3	-16	

conv3	-64	 conv3	-32	 conv3	-32	 conv3	-32	 conv3	-16	

conv3	-128	 conv3	-64	 conv3	-64	 conv3	-64	 conv3	-32	

conv3	-128	 conv3	-64	 conv3	-64	 conv3	-64	 conv3	-32	

conv3	-256	 conv3	-128	 conv3	-128	 conv3-128	 conv3	-64	

conv3	-256	 conv3	-128	 conv3	-128	 conv3-128	 conv3	-64	

conv3	-256	 conv3	-128	 	 	 	

conv3	-256	 conv3	-128	 	 	 	

global	average	pooling,	FC-10/100,	softmax	
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convolution, bilinear unsampling was applied before 
feedback convolution to ensure that the dimension of 
top-down prediction could match the dimension of 
lower-level representation.  

An optional constraint to PCN was to use the same set of 
weights for both feedforward and feedback connections as 
in some prior studies (Rao and Ballard, 1999; Spratling, 
2008, 2017). In other words, the weights of feedback 
connections were the transposed weights of feedforward 
connections. With this weight sharing, top-down 
predictions via feedback connections tended to approach 
lower-level representations. The PCN would have the same 
number of parameters as the corresponding plain model. 
Without this optional constraint of weight sharing, 
feedforward and feedback weights were assumed to be 
independent.   

3.3  Recursive Computation  

Unlike feedforward-only networks, PCN runs a dynamic 
process to update its internal representation throughout the 
hierarchy (Fig. 1.b). Given an input image, PCN first runs 
through the feedforward path from the input layer to the 
last convolutional layer at 𝒕	= 𝟎, equivalent to a plain CNN 
model. For 𝒕	= 𝟏, PCN first runs a feedback process and 
then a feedforward process to update the representations in 
the hierarchy. In the feedback process, the representation at 
each layer is updated by a top-down prediction from the 
higher layer according to Eq. (11). The feedback process 
runs from the highest convolutional layer to the input layer. 
In the feedforward process, the representation at each layer 
is updated by a bottom-up error according to Eq. (10). This 
procedure is repeated over time. After some cycles, the 
representation is used as the input to the classification layer 
to classify the image (see Algorithm 1).  

3.4  Model Training 

When PCN is trained for image classification, the error 
backpropagates across layers and in time to update the 
model parameters. The update rates are constrained to be 
non-negative by using ReLU, and are learnable parameters 
specific to each filter in each layer.  

We evaluated two types of PCNs with regard to an optional 
constraint: the feedforward and feedback connections 
share the same convolutional weights. With this weight 
sharing, the feedforward operation and the feedback 
operation use the same weights. Without the constraint, the 
feedforward and feedback weights are initialized 
interpedently. 

In this work, we evaluated these two types of PCNs with a 
varying number of recursive cycles (𝑡 = 0, 1, 2,⋯ , 6) and 
with different model architectures (labeled as A through E 
in Table 1). We use Plain-A to represent the plain network 
with architecture A, and use PCN-A-t to represent the PCN 
with architecture A and 𝑡 cycles of recursive computation. 
PCN-A-t (tied) and PCN-A-t represent the PCNs with and 
without weight sharing, respectively. 

We used PyTorch (Paszke et al., 2017) to implement, train, 
and test the models described above. The convolutional 
weights and linear weights were initialized to be uniformly 
random (the default setting in PyTorch). The feedforward 
and feedback update rates were initialized as 1.0 and 0.5, 
respectively. The models were trained using mini-batches 
of a size 128 and without using dropout regularization 
(Srivastava et al., 2014). 

4.  Experiments 

We trained and tested PCN for image classification with 
data in CIFAR-10/100, SVHN and MNIST, in comparison 
with plain CNN using the same feedforward architecture. 
With random initialization, PCN (or CNN) was trained for 

Algorithm 1 Deep Predictive Coding Network 

Input static image: 𝐱 
2. 	𝐫T(𝑡) ← 𝐱	
3. 
4.  for l = 0 to L-1 do 
5.      𝐫$G+(0) ← ReLU VFFConv\𝐫$(0)]^ 
6.   
7.  for t = 1 to T do 
8.      for l = L to 1 do 
9.         𝐩$*+\𝑡-1] ← FBConv V𝐫$\𝑡-1]^ 
10.       if l > 1 do 
11.          𝐫$*+\𝑡-1]	←ReLU V\1-𝑏]𝐫$-+\𝑡-1]+𝑏𝐩$-+\𝑡-1]^ 
12.     for l = 0 to L-1 do 
13.        𝐞$(𝑡) ← 	 𝐫$(𝑡) − 	𝐩$\𝑡-1] 
14.									𝐫$G+(𝑡)←ReLU V𝐫$G+(𝑡-1)+𝑎FFConv\𝐞$(𝑡)]^ 
15.  
16. output 𝐫b(T) for classification 

Note: FFConv represents the feedforward convolution, 
FBConv represents the feedback convolution. 

 

 

Figure 2. Training (top) and testing (bottom) accuracies for 
PCN vs. CNN with matched feedforward architectures for 
training with CIFAR-10 (left) and CIFAR-100 (right). Each 
curve represents the average over 5 repeats of one model with 
different cycles of recursive computation, ranging from 1 to 6. 
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5 times; the best and mean±std top-1 accuracy was 
reported as below. 

4.1  CIFAR-10 and CIFAR-100 

The CIFAR-10/100 dataset includes 50,000 training 
images and 10,000 testing images in 10 or 100 object 
categories. Each image is a 32×32 RGB image. PCN (or 
CNN) were trained on the training set and evaluated on the 
test set. All images were normalized per channel (i.e. 
subtract the mean and divide by the standard deviation). 
For training, we used translation and horizontal flipping 
for data augmentation. We used stochastic gradient decent 
to train PCN (or CNN) with a weight decay of 0.0005 and a 
momentum of 0.9. The learning rate was initialized as 0.01 
and was divided by 10 when the error reached the plateau 
after training for 80, 140, 200 epochs. We stopped after 
250 epochs. The hyper-parameters for learning were set 

based on validation with 10,000 images in the training set.   

4.1.1  PCN VS. CNN 
During training, PCN converged much faster than its CNN 
counterpart (Fig. 2, top), especially when feedforward and 
feedback connections did not share weights. With testing 
data, PCN also yielded better accuracy than the plain CNN 
model (Fig. 2, bottom). For example, PCN improved the 
classification accuracy from 62.11% to 72.48% on 
CIFAR-100, relative to the plain CNN model. See Table 2 
for more results for comparison with other classical or 
state-of-the-art models. Without being pushed for high 
accuracy, PCN showed a similar accuracy as ResNet (He et 
al., 2016b), but relatively lower than the pre-activation 
ResNet (Pre-act-ResNet) (He et al., 2016a) or the wide 
residual network (WRN) (Zagoruyko & Komodakis, 
2016), which used a  much deeper or much wider 
architecture than the models explored in this study.  

4.1.2  PCN WITH DIFFERENT RECURSIVE CYCLES 
The accuracy of PCN depended on the number of cycles 
that recursively updated its internal representations. Fig. 3 
shows that the accuracy of PCN tended to increase given 
more cycles of computation, especially if feedforward and 
feedback processes did not share the same weights.  

To understand why this was the case, we looked into some 
testing images that were mis-classified by CNN but not by 
PCN. At each time step (0 through 6), PCN computed a 
different representation of an image that yielded a different 
probability distribution across different categories (Fig. 4). 

 
 
Figure 3. Testing accuracies of PCNs with different time steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Image classification at different time steps for PCN-A-6 (bottom) in comparison with the plain CNN model (middle) for 
each of the 10 testing images misclassified by CNN (Plain-A). Each plot shows the probabilities over 10 classes in CIFAR-10. The red 
represents the ground truth. 
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Classification was less definitive and/or inaccurate at early 
time steps. At later time steps, the network corrected itself 

to yield more definitive and accurate classification. It was 
true especially for ambiguous images, where a cat looked 
like a dog, or a deer looked like a horse, even for humans. 
See more examples in Fig. 4.  

4.1.3  GENERATIVE PREDICTION IN PCN  
When it was trained for image classification, PCN was not 
explicitly optimized to reconstruct the input image, unlike 
a previous work that used video prediction as the learning 
objective (Lotter et al., 2016). Nevertheless, the top-down 
process in PCN was able to reconstruct the input with high 
accuracy. Although this was expected for PCN with weight 
sharing, reconstruction was also reasonable even for PCN 
without weight sharing (Fig. 5). This result was surprising, 
and implied that PCN, without any architectural constraint 
to enable image reconstruction, is able to reshape itself to 
predict or reconstruct the input, even when it is trained for 
a discriminative task, e.g. object recognition. Speculatively 
PCN potentially provides a new way to simultaneously 
train a discriminative network for object recognition and a 
generative network for prediction or reconstruction.  

4.2  SVHN 

SVHN is a dataset of Google’s Street View House 
Numbers images (Netzer et al., 2011) and contains more 
than 600,000 color images of size 32×32, divided into 
training set, testing set and an extra set. The task of this 
dataset is to classify the digit located at the center of each 
image. Since the task is easier than CIFAR datasets, we 
implemented PCN with simpler network architectures (see 
Table 1). To validate the hyper parameters, we randomly 
selected 400 samples per class from the training set and 
200 samples per class from the extra set for validation, as 
in (Goodfellow et al., 2013). The remainder of the training 
set and the extra set were used for training. The 
preprocessing for SVHN was the same as for CIFAR, i.e. 
per-channel normalization. No data augmentation was 
used. We used the Adam (Kingma & Ba, 2014) 
optimization with a weight decay of 0.0005 and an initial 
learning rate of 0.001 for a 20-10-10 epoch schedule. The 
exponential decay rates for the first and second moment 
estimates were 0.9 and 0.99, respectively. Table 3 shows 
the classification performance for this dataset. Like what 
we found for the CIFAR dataset, PCN always 
outperformed the plain CNN counterpart.  

4.3  MNIST 

The MNIST dataset consists of hand written digits 0-9. 
There are 60,000 training images and 10,000 testing 
images in total. Each image is a gray image of size 28x28. 
For this dataset, the same network architecture as used for 
SVHN is adopted. The training procedure was the same as 
for SVHN. Table 4 shows the classification performance 
for this dataset. PCN consistently performed better than its 
CNN counterpart. The best PCN achieves 0.36% error rate, 
comparable to some previous state-of-the-art models. 

5.  Discussion and Conclusion 

 

 

 

 

 

 

 

 

Figure 5. Top-down image prediction by PCN. Here shows 
example testing images in CIFAR-10 and their corresponding 
images predicted by PCNs.  

Table 2. Compare PCNs with start-of-the-art models on 
CIFAR-10/100 datasets. #L and #P are the number of layers 
and parameters, respectively. 

Models CIFAR10/100 
CIFAR100 Methods #L #P Accuracy (%) 

Maxout(Goodfellow et al.,2013) - - 90.62 61.43 
dasNet (Stollenga et al., 2014) - - 90.78 66.22 
NIN (Lin et al., 2013) - - 91.19 64.32 
DSN (Lee et al., 2015) - - 91.78 65.43 
RCNN (Liang &	Hu, 2015) 6 1.86M 92.91 68.25 
FitNet (Romero et al., 2014) 19 2.5M 91.61 64.96 
Highway(Srivastava et al.,2015) 19 2.3M 92.46 67.76 

ResNet 
(He et al., 2016b) 

110 1.7M 93.57 - 
164 1.7M - 74.84 
1001 10.2M - 72.18 
1202 19.4M 92.07 - 

Pre-act-ResNet 
(He et al., 2016a) 

110 1.7M 93.63 - 
164 1.7M 94.54 75.67 
1001 10.2M 95.08 77.29 

WRN-40-4 
WRN-16-8 
WRN-28-10 
 (Zagoruyko & Komodakis, 2016) 

40 8.9M 95.47 78.82 
16 11M 95.73 79.57 

28 36.5M 96.00 80.75 

DenseNet (Huang et al., 2017) 250 15.3M 96.28 82.40 
Plain-A 9 2.33M 90.61 62.11 
PCN-A-6 (tied) 9 2.33M 92.26 69.44 
PCN-A-6 9 4.65M 93.83 72.58 
Plain-B 9 0.58M 89.53 62.21 
PCN-B-2 (tied) 9 0.58M 90.76 65.57 
PCN-B-6 9 1.16M 92.80 69.34 
Plain-C 7 0.29M 88.23 61.36 
PCN-C-2 (tied) 7 0.29M 89.56 64.09 
PCN-C-6 7 0.57M 92.40 68.31 
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What defines PCN are 1) the use of bi-directional and 
recurrent connections as opposed to feedforward-only 
connections, and 2) the use of predictive coding as a 
mechanism for the model to recursively run bottom-up and 
top-down processes. When it is trained for image 
classification, the model dynamically refines its 
representation of the input image towards more accurate 
and definitive recognition. As this computation is unfolded 
in time, PCN reuses a single architecture and the same set 
of parameters to run an increasingly longer cascade of 
nonlinear transformation.  

We say it is “longer” instead of “deeper”, because the 
notion behind PCN is different from the mindset in deep 
learning that more layers are required to model more 
complex and nonlinear relationships in data. Making a 
model increasingly deeper is arguably less efficient or 
scalable, bringing a set of challenges or burdens, e.g. the 
need for more computational resource and training data. In 
contrast, the brain does not use a deeper network to do 
more challenging tasks. A more challenging task simply 
takes the brain longer time to process information through 
the same network.   

Predictive coding tells PCN how to compute but not how to 
learn. In this study, PCN is trained for image classification 
based on the representation emerging from the top layer 
after multiple cycles of computation. The error of 
classification backpropagates (top-down and bottom-up) 
across layers and in time to update the model parameters 
for multiple times (as many as the cycles of recursive 
computation) per training example or batch of examples. 
This helps the learning to converge faster, while utilizing 
full knowledge in training data. If an image takes the 
model more cycles of computation to converge its 
representation, it means that the image has more 
information than what the model can explain or generate, 
and thus the image carries a greater value for the model to 
learn. Therefore, it is more desirable to train PCN for more 
challenging visual tasks, e.g. images that are ambiguous or 

difficult to recognize, while reducing the need for a large 
number of otherwise “simple” training examples.  

For image classification, PCN takes an image as the input 
for all cycles of its recursive computation, while the errors 
of top-down prediction sent to the first hidden layer vary 
across cycles or in time. When the input is not a static 
image but a video, the input to the first hidden layer 
represents the errors of prediction of the present video 
frame given the model’s representations from the past 
frames. This would enable the model to compute and learn 
representations of both spatial and temporal information in 
videos, which is an important aspect that awaits to be 
explored in future studies.  

As an initial step to explore predictive coding in computer 
vision, it was our intention to start and compare with 
models with a basic CNN architecture (like that of VGG) 
in order to focus on evaluation of the value of using 
predictive coding as a computational mechanism. 
However, we expect that some network modules are 
readily applicable to PCN as well as CNN, including batch 
normalization (Ioffe & Szegedy, 2015) and short-cut 
connections (He et al., 2016b). In addition, the update rates 
for top-down and bottom-up computation may be trainable 
as time-variant parameters as opposed to constants 
assumed in the current implementation. Augmentation of 
training data or regularization techniques, e.g. dropout 
(Srivastava et al., 2014) may also help to improve the 
model’s performance in image classification. In future 
studies, we will explore alternative architectures and 
learning strategies for larger and more training images, e.g. 
ImageNet (Deng et al., 2009). 
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Table 3. Compare PCNs with start-of-the-art models on 
SVHN. The accuracy was obtained from five repeats. 

SVHN	
Methods	 #L	 #P	 error	rate	(%)	

Maxout(Goodfellow et al., 
2013)	

-	 -	 2.47	
NIN	(Lin et al., 2013)	 -	 -	 2.35	
Stochastic	pooling	(Zeiler	and	
Fergus,	2013)	 -	 -	 2.80	

Dropconnect	(Wan	et	al.,	
2013)	

-	 -	 1.94	
DSN	(Lee et al., 2015)	 -	 -	 1.92	
RCNN	(Liang and Hu, 2015)	 6	 2.67M	 1.77	
FitNet	(Romero et al., 2014)	 13	 1.5M	 2.42	
WRN-16-8	(Zagoruyko and 
Komodakis, 2016)	 16	 11M	 1.54	

Plain-D	 7	 0.29M	 3.21(3.41±0.13)	
PCN-D-2	(tied)	 7	 0.29M	 2.63(2.92±0.11)	
PCN-D-6	 7	 0.57M	 2.28(2.42±0.09)	
Plain-E	 7	 0.07M	 3.19(3.41±0.13)	
PCN-E-1	(tied)	 7	 0.07M	 2.74(2.91±0.11)	
PCN-E-6	 7	 0.14M	 2.24(2.42±0.10)	
 

Table 4. Compare PCNs with the start-of-the-art models on 
MNIST. The accuracy was obtained from five repeats 

MNIST	
Methods	 #L	 #P	 error	rate	(%)	

Maxout(Goodfellow et al., 2013)	 -	 -	 0.45	
NIN	(Lin et al., 2013)	 -	 -	 0.47	
Stochastic	pooling	(Zeiler	and	
Fergus,	2013)	

-	 -	 0.47	

Dropconnect	(Wan	et	al.,	2013)	 -	 -	 0.21	
DSN	(Lee et al., 2015)	 -	 -	 0.39	
RCNN	(Liang and Hu, 2015)	 6	 0.67M	 0.31	
FitNet	(Romero et al., 2014)	 -	 -	 0.51	

Hierarchical	PC/BC-DIM	(Spratling,	
2017)	

-	 -	 2.19	

Plain-D	 7	 0.29M	 0.53(0.59±0.04)	
PCN-D-1	(tied)	 7	 0.29M	 0.43(0.50±0.06)	
	PCN-D-1	 7	 0.57M	 0.38(0.46±0.06)	
	Plain-E	 7	 0.07M	 0.68(0.74±0.03)	
	PCN-E-1	(tied)	 7	 0.07M	 0.43(0.51±0.06)	
	PCN-E-4	 7	 0.14M	 0.36(0.48±0.06)	
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