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Abstract Neurophysiological field-potential signals con-

sist of both arrhythmic and rhythmic patterns indicative of

the fractal and oscillatory dynamics arising from likely

distinct mechanisms. Here, we present a new method,

namely the irregular-resampling auto-spectral analysis

(IRASA), to separate fractal and oscillatory components in

the power spectrum of neurophysiological signal according

to their distinct temporal and spectral characteristics. In

this method, we irregularly resampled the neural signal by

a set of non-integer factors, and statistically summarized

the auto-power spectra of the resampled signals to separate

the fractal component from the oscillatory component in

the frequency domain. We tested this method on simulated

data and demonstrated that IRASA could robustly separate

the fractal component from the oscillatory component. In

addition, applications of IRASA to macaque electrocor-

ticography and human magnetoencephalography data

revealed a greater power-law exponent of fractal dynamics

during sleep compared to wakefulness. The temporal

fluctuation in the broadband power of the fractal compo-

nent revealed characteristic dynamics within and across the

eyes-closed, eyes-open and sleep states. These results

demonstrate the efficacy and potential applications of this

method in analyzing electrophysiological signatures of

large-scale neural circuit activity. We expect that the pro-

posed method or its future variations would potentially

allow for more specific characterization of the differential

contributions of oscillatory and fractal dynamics to dis-

tributed neural processes underlying various brain

functions.

Keywords Fractal � Oscillation � Power-law � Self-
affinity � Scale-free

Introduction

RICH temporal dynamics of neural activity is commonly

captured by electrophysiological recordings, e.g. local field

potential (LFP), electrocorticogram (ECoG), electroen-

cephalography (EEG) andmagnetoencephalography (MEG)

(Nunez and Srinivasan 2006). Such neural signals exhibit a

variable mixture of rhythmic and arrhythmic patterns

(Buzsaki et al. 2012). The former arises from oscillatory

network activity with a characteristic time scale (Buzsáki

and Draguhn 2004), whereas the latter is not confined to any

specific scale and reflects the so-called fractal (or scale-free)

dynamics (He et al. 2010). When these signals are trans-

formed to corresponding power spectra, the oscillatory

component results in multiple discrete peaks at specific fre-

quencies, and the fractal component manifests itself as a

descending straight line on the log–log plot suggesting a

power-law relationship (Miller et al. 2009).

Oscillatory and fractal activities are likely generated

through different mechanisms (Buzsáki and Draguhn 2004;

He et al. 2010) and report on distinct features of large-
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scale neural networks (Bullmore and Sporns 2009; Engel

et al. 2013; Siegel et al. 2012). In particular, neuronal

oscillations have been of long-standing interest to neuro-

physiologists, and in practice are extracted by applying

band-pass filtering to neural signals. However, the result-

ing band-limited signals, although appearing oscillatory,

can result from filtering even in the absence of any bio-

logical oscillator, and thus may sometimes reflect artifi-

cially extracted fractions of the brain’s arrhythmic activity

(He 2014).

Analysis of fractal dynamics has also attracted growing

interest with the current emphasis directed upon its fre-

quency scaling property (Ciuciu et al. 2012; El Boustani

et al. 2009; Fransson et al. 2013; Freeman 2007; He et al.

2010; Manning et al. 2009). To characterize this property,

power spectral density (PSD) of neural signals is often

fitted by a power-law function, or equivalently a linear

function in double-logarithmic coordinates, where the

slope provides an estimate of the underlying power-law (or

frequency-scaling) exponent (Manning et al. 2009; Miller

et al. 2009). The precision of such estimation, however, is

compromised in the presence of prominent oscillations that

deviate the PSD from a power-law distribution (He et al.

2010; Miller et al. 2009).

Therefore, it is desirable to separate fractal and

oscillatory components in order to analyze their indi-

vidual characteristics without being concerned about

their mutual interference. Toward this end, a method

known as the coarse graining spectral analysis (CGSA)

has been developed to extract and analyze the fractal

dynamics (Yamamoto and Hughson 1991, 1993) of

human ECoG signals (He et al. 2010). Central to CGSA

is the so-called self-affinity property of any fractal time

series: the statistical distribution remains unchanged

when resampled at different time scales (Mandelbrot and

Van Ness 1968). It follows that after resampling a time-

series signal (e.g. by a factor of 2 or �), the cross power

spectrum of the original and resampled signals is

expected to follow a power-law distribution if the signal

is self-affine or fractal, but close to zero if the signal is

simply periodic or oscillatory (Yamamoto and Hughson

1991, 1993). For this reason, CGSA has been presumed

to be able to extract the fractal component from the

power spectrum of a time series that mixes both fractal

and oscillatory processes (González et al. 1999; He et al.

2010; Pereda et al. 1998; Yamamoto and Hughson 1991,

1993). Although it sounds intuitively reasonable, this

presumption is questionable in theory. When a signal is

composed of both fractal and oscillatory time series, the

cross power spectrum of this signal and its resampled

version includes non-negligible contributions from the

interactions of the original (or resampled) fractal time

series and the resampled (or original) oscillatory time

series. Such interactions are difficult to remove based on

the cross-spectral analysis, bringing into question the

practical efficacy of CGSA for separating the spectral

components attributed to the fractal and oscillatory

dynamics.

Here we propose a new method, referred to as the

Irregular-Resampling Auto-Spectral Analysis (IRASA), to

separate fractal and oscillatory components in the power

spectrum of neurophysiological signals. In IRASA, we

resample a neural signal by multiple non-integer pairwise

factors (positive numbers and their reciprocals), and then

compute the geometric mean of the auto-power spectra of

every pair of the resampled signals. In the resulting spec-

trum, the power associated with the oscillatory component

is redistributed away from its original (fundamental and

harmonic) frequencies by a frequency offset that varies

with the resampling factor, whereas the power solely

attributed to the fractal component remains the same

power-law statistical distribution independent of the

resampling factor. It follows that taking the median of the

mean auto-power spectra of the variously resampled sig-

nals can extract the power spectrum of the fractal compo-

nent, and the difference between the original power

spectrum and the extracted fractal spectrum offers an

approximate estimate of the power spectrum of the oscil-

latory component.

In what follows, we will show that IRASA is robust

against the presence of the complex interaction between

fractal and oscillatory components, being useful to extract

the broadband activity that conforms to the scale-free

dynamics. To demonstrate this point, we have evaluated

IRASA with both simulation and experimental (MEG and

ECoG) data. We have noted that the fractal dynamics in

different behavioral states gives rise to distinct broadband

features, suggesting that IRASA can be used to potentially

reveal and differentiate the varying fractal signatures

across brain states. Other implications and future applica-

tions are also discussed. In the online supplementary

materials, we will further compare IRASA with CGSA in

theory and with simulation data.

Methods and Materials

The problem addressed here is to separate the power

spectra of the unknown fractal activity, f(t), and the

unknown oscillatory activity, x(t), given the measured

neural signal, y(t), which is assumed to consist of both f(t)

and x(t) through a simple additive model without noise.

yðtÞ ¼ f ðtÞ þ xðtÞ ð1Þ

To solve this problem, we have developed the IRASA

method that utilizes the self-affine property of fractal time
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series and the frequency-specific nature of oscillatory time

series (Fig. 1). For IRASA, the spectral component due to

the fractal activity was first extracted from the spectrum of

the mixed neural signal, and then taking the difference

between the mixed spectrum and the extracted fractal

spectrum served to approximate the spectral component

due to the oscillatory activity. In the following, we will first

introduce the temporal and spectral characteristics of

fractal and oscillatory signals; then we will elaborate the

theory and algorithm for IRASA; lastly we will describe

the simulation and experimental data used for performance

evaluation. The theoretical basis and limitations of CGSA

are elaborated in the online supplementary materials in

addition to (Yamamoto and Hughson 1991, 1993).

Self-Affinity of Fractal Time Series

A fractal time series, f(t), satisfies a self-affine relationship

expressed as (2).

fhðtÞ, hHf ðtÞ ð2Þ

It indicates that when the fractal time series is resampled

by a factor of h (h[ 0), the resampled time series, denoted

as fh(t), has the same statistical distribution as the original

one scaled by a factor of hH, where H is called the Hurst

exponent (Mandelbrot and Van Ness 1968). Applying the

Fourier transform to f(t) and fh(t) yields FðxÞejaðxÞ and

FhðxÞejahðxÞ respectively, where F(x) and a(x) are the

amplitude and phase at specific angular frequencies x for

f(t), and Fh(x) and ah(x) are the counterparts for fh(t). This
self-affine relationship is equivalent to the frequency

scaling property expressed as (3).

FhðxÞ ¼ hHFðxÞ ð3Þ

It means that the amplitude spectrum of the resampled

fractal time series is the same as that of the original time

series scaled by a factor of hH. Note that Eq. 3 holds true

only if F(x) follows a power-law distribution shown as a

line in log–log coordinates.

Narrow-Band Nature of Oscillations

Let x(t) stand for an oscillatory time series and xh(t) be the

time series obtained by resampling x(t) by a factor of h. Let

XðxÞejbðxÞ and XhðxÞejbhðxÞ be the Fourier representations

of x(t) and xh(t), respectively. By definition x(t) is a peri-

odic and narrow-banded signal. The power spectra of both

x(t) and its resampled version xh(t) are non-zero only at

specific frequencies and close to zero elsewhere. The

‘‘sparse’’ spectral distribution is characteristic of oscilla-

tions in contrast to the fractal dynamics, which has a

‘‘continuous’’ broadband distribution.

Irregular-Resampling Auto-Spectral Analysis

(IRASA)

In IRASA, we extract the fractal power spectrum through

computing the auto-power spectra of the resampled signals

that result from downsampling and upsampling the mea-

sured signal by a set of non-integer factors. As such, the

resulting time series signals are ‘‘irregularly’’ resampled

from the original signal.

The auto-power spectra of yh(t) and y1/h(t) are as (4) and

(5), respectively.
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Fig. 1 Overall schematic illustration of IRASA. The input for IRASA is a mixed time series composed of both fractal and oscillatory signals and

the output is the separated power spectra of these two components
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Syhyh xð Þ ¼ Fh xð Þejah xð Þ þ Xh xð Þejbh xð Þ
h i

Fh xð Þe�jah xð Þ þ Xh xð Þe�jbh xð Þ
h i

¼ h2HF2 xð Þjj1þWh xð Þejhh xð Þjj2
ð4Þ

Sy1=hy1=h xð Þ ¼ F1=h xð Þeja1=h xð Þ þ X1=h xð Þejb1=h xð Þ
h i

F1=h xð Þe�ja1=h xð Þ þ X1=h xð Þe�jb1=h xð Þ
h i

¼ h�2HF2 xð Þjj1þW1=h xð Þejh1=h xð Þjj2
ð5Þ

where Wh xð Þ ¼ Xh xð Þ=Fh xð Þ; hh xð Þ ¼ ahðxÞ � bh xð Þ;
W1=h xð Þ ¼ X1=h xð Þ=F1=h xð Þ; h1=h xð Þ
¼ a1=h xð Þ � b1=h xð Þ. Note that W and h indicate the

relationship between the oscillatory and fractal components

in terms of their ratio in magnitude and their difference in

phase, respectively.

By computing the geometric mean of these two auto-

power spectra, we can obtain an initial estimate of the

fractal power spectrum, which is denoted as �Sh xð Þ and

expressed as (6).

�Sh xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Syhyh xð ÞSy1=hy1=h xð Þ

q

¼ F2 xð Þjj1þWh xð Þejhh xð Þjj jj1þW1=h xð Þejh1=h xð Þjj
ð6Þ

If y tð Þ only contains the fractal component, Wh xð Þ and
W1=h xð Þ are equal to zero for any x, and �Sh xð Þ is then

independent of h and always equals to the fractal power

spectrum. If y tð Þ only contains the oscillatory component

with a single harmonic frequency x0, �Sh xð Þ is equal to

zero for any frequency.

If both fractal and oscillatory components are present in

y tð Þ, �Sh xð Þ is as (7).
�Sh xð Þ¼

F2 xð Þ; x 6¼x0handx 6¼x0=h

F2 xð Þjj1þWh xð Þejhh xð Þjj; x¼x0h

F2 xð Þjj1þW1
h
xð Þejh1h xð Þjj; x¼x0=h

8>><
>>:

ð7Þ

It suggests that �Sh xð Þ is an unbiased estimate of the

fractal power spectrum at the oscillatory frequency as well

as other frequencies except x0h and x0=h. Importantly,

since the estimation errors are expected to occur only at

frequencies that are dependent on the resampling factor h,

setting different non-integer values (e.g. between 1.1 and

1.9) to h relocates the oscillation-associated power and

yields a set of estimates for the fractal power spectrum
�Sh xð Þf g. In every one of these estimates, the oscillatory

power is relocated to different frequencies (as illustrated in

Fig. 2). In other words, these h-dependent spectral

estimates, viewed at every individual frequency, are

expected to mostly center about the true power of the

underlying fractal component with typically one deviation

due to the interference from the underlying oscillatory

component. This deviation is an ‘‘outlier’’ within a set of

otherwise unbiased fractal power estimates at each fre-

quency (as illustrated in Fig. S2). We can eliminate the bias

from the outlier by taking the median of these fractal power

estimates at every frequency.

F2 xð Þ ¼ medianh �Sh xð Þf g; for each x ð8Þ

Since the median is a very robust sampling statistic

against the presence of outliers with a breakdown point of

50 % (Bassett 1991), Eq. 8 is expected to yield an unbiased

estimate of the power of the fractal component at any

specific frequency as long as the number of outliers is less

than half at this frequency. See Figs. 2 and S3 for more

detailed illustrations and explanations.

To further estimate the PSD of the oscillatory compo-

nent, we derive Eq. (9) from Eq. (1).

Y2 xð Þ ¼ F2 xð Þ þ X2 xð Þ þ 2F xð ÞX xð Þ cos a xð Þ � b xð Þð Þ
ð9Þ

It shows that the PSD of the oscillatory component is

related not only to the difference between the PSD of the

mixed signal and the PSD of the fractal component, but

also to another confounding term that depends on the

relative phase difference between the fractal and oscilla-

tory components. Assuming no phase–phase coupling

between the fractal and oscillatory components, the

expectation of this confounding term is close to zero. To

approximate the expectation, we can select multiple time

segments within the given period during which the signal

is assumed to be stationary. After averaging the PSD of

the segmented signal across segments, the confounding

term reduces to zero. Therefore, the difference of the

averaged PSD of the raw signal and the estimated PSD of

the fractal component can serve as an unbiased estimate

for the expectation of the PSD of the oscillatory

component.

Algorithm

(a) From a given period of the time series signal, we

chose ten time segments. Every time segment was

90 % of the total length. These segments were

evenly distributed within the total period and were

partially overlapping.

(b) For each segment defined in (a), the auto-power

spectrum was estimated from the original signal by

using fast Fourier transform (FFT) tapered with a

Hanning window. The number of frequency points

16 Brain Topogr (2016) 29:13–26
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(NFFT) was chosen to be two times the smallest

power of two that was greater than the number of

time points in each segment. Given h\ 2 as used in

(c), NFFT is guaranteed to be greater than the

number of time points in the original signal or its

down-sampled or up-sampled version, ensuring

equal sampling in the angular frequency without

losing any overall spectral energy.

(c) For each segment defined in (a), we resampled the

signal by h and 1/h, where h ranged from 1.1 to 1.9

with the increment of 0.05. In order to irregularly

upsample the signal by h, we interpolated the signal

by using a cubic spline method. To irregularly down

sample the signal, we first applied an anti-aliasing

low-pass filter and then used the cubic spline

interpolation. Then we estimated the auto-power

spectra of the resampled signals using the same FFT-

based method and the same number of frequency

points as in (b).

(d) For each segment defined in (a), the geometric mean

of the auto-power spectra of the up-sampled and

down-sampled signals was calculated for each

h value. The median of the results with all h-values

was obtained to estimate the power spectrum of the

fractal component.

(e) The estimated PSD of the fractal component and the

calculated PSD of the signal were both averaged

across all time segments defined in (a).

(f) The average power spectrum of the fractal compo-

nent was subtracted from the average power spec-

trum of the original signal to yield the estimated

power spectrum of the oscillatory component.

The above algorithmwas implemented inMatlab andwill soon

be made publicly available with example datasets on our

website (http://engineering.purdue.edu/libi/lab/Resource.html).

The estimated power spectrum of the fractal component

was transformed to the log–log scale only for the display

and quantification of the power-law distribution. In the log

scale, there are increasingly more spectral sampling points

for higher frequencies. Therefore, we resampled the fre-

quencies to be evenly spaced in the log scale, in order to

prevent the higher frequency range from dominating the

estimation of the power-law properties. Then we used the

least squares estimation to obtain a linear function that

best fitted the estimated fractal power spectrum. The slope

of the linear function was the estimated power-law expo-

nent, b, and the intercept of the linear function was

referred to as the log-power intercept. The mean power in

the log scale was the estimated broadband power (Miller

et al. 2009).

Note that a sliding window can be used to progressively

select shorter periods out of a relatively longer period, as

commonly used in short-time Fourier transform. Within

each sliding window, the above algorithm and quantifica-

tion can be used to separate the power spectra of the fractal

and oscillatory components of the signal, resulting in time

frequency representations of the fractal and oscillatory

components.

Computer Simulation

For the initial tests of the proposed IRASA method, we

simulated fractal and oscillatory time series without con-

sidering noise. The fractal time series was generated by
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Fig. 2 Procedures to estimate the power spectrum of the fractal component by statistically summarizing the geometric means of the auto-power

spectra of the signals up-sampled and down-sampled by a set of non-integer factors
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inverse FFT applied to a power-law Fourier spectrum as

described in (Yamamoto and Hughson 1993). Briefly, the

power distribution followed a 1/f trend with a preset

power-law exponent b. The phase distribution was random

and followed a uniform distribution between 0 and hmax,
where hmax � 2p.

The oscillatory component was simulated as a single

sinusoidal signal or the sum of a varying number of sinu-

soidal signals, and then added to the simulated fractal

component. The amplitudes of the additive sinusoidal

signals were systematically varied from 10 to 400 % of

those of the fractal component at the same frequencies. All

of the simulated time series signals included 8500 time

points with a 1000-Hz sampling rate. With these noise-free

simulation data, we evaluated the performance of separat-

ing and characterizing the power spectrum of the fractal

component as a function of the number of oscillations, the

phase distribution of the fractal time series, and the relative

amplitude of the oscillatory component to the fractal

component. In addition, we also applied the IRASA to

estimate the PSD of the simulated multifractal time-series

component that exhibited power-law distributions in mul-

tiple separate frequency ranges with different power-law

exponents.

Although the aforementioned theoretical derivation is

based on a noise-free model, we also simulated data with

additive white noises. For an initial testing purpose, we first

mixed one 10 Hz oscillatory signal with the simulated

scale-free signal as aforementioned; then we added ran-

domly generated noise to the mixed signal such that the

signal to noise ratio, defined as the ratio of the variance of

the mixed signal to the variance of the additive noise,

varied at 1, 10, and 100. With these data, we evaluated the

robustness of IRASA against noise contamination.

Experiment Data and Analyses

We also used the proposed IRASA method to analyze

in vivo ECoG and MEG data. The ECoG data were

downloaded from the website of the Project Tycho (http://

neurotycho.org). The ECoG data were originally collected

with a sampling rate of 1 kHz from macaque brain in the

eye-closed wakeful resting state and the sleep state by

using 128 sensors covering the entire lateral surface of the

left macaque cortex. In this study, we analyzed data from

two macaques, 4 sessions for each macaque, and each

session included two segments of 5-min time series with

one in wakefulness and the other in sleep. The MEG data

were obtained from a previously published study (Liu

et al. 2010). It was recorded in three different behavioral

states, the eyes-closed, eyes-open and sleep states for a

total of 40 min. We analyzed the MEG data from 5

subjects.

For both ECoG and MEG data, we applied IRASA to a

sliding time-window to obtain a time-varying fractal and

oscillatory spectra (i.e. time–frequency representation or

spectrogram). The sliding window was set to be 3 s with

1 s increments. We fitted a power-law function to the

estimated fractal spectrum (1–30 Hz) at every sliding time

window, and obtained the time courses of the power-law

exponent, the intercept of the power-law function in log–

log coordinates, and the broadband power. We further

averaged the time-resolved spectral components within

distinct behavioral states and compared the results across

states. The purpose was to characterize and differentiate

different behavioral states based on their broadband scale-

free signatures as opposed to narrowband oscillations.

Result

We initially evaluated the efficacy of IRASA in compar-

ison with CGSA by using simulated time-series signals

with various mixtures of fractal and oscillatory compo-

nents. Figure 3a, b show the PSD of the simulated signals

and the PSD of the fractal components estimated by using

CGSA and IRASA. For CGSA, the extracted fractal PSD

generally followed a power-law (1/f) trend with ‘‘noisy’’

deviations especially at the oscillation frequencies where

the spectral peaks remained obvious despite the reduced

power. Note that CGSA could not lead to the complete

separation of the fractal and oscillatory components even if

the oscillation only had a single frequency (as predicted by

its theoretical limitations elaborated in the online supple-

mentary material), and its performance became worse

when an increasing number of oscillations were included.

In contrast, IRASA could be used to successfully remove

oscillations and obtain an accurate fractal PSD that strictly

obeyed the power-law distribution. The residual oscilla-

tion-related spectral peaks were negligible when the signal

included a small number of oscillations. Even if as many as

50 oscillations were included, IRASA was still able to

exclude most oscillations and resulted in a clean power-law

PSD that well characterized the underlying fractal com-

ponent with minor interference from the oscillatory com-

ponent. In addition, IRASA could also be used to estimate

the PSD of a multifractal time-series component, albeit

blurred breakpoints between these frequency ranges

(Fig. 3c).

With various levels of additive white noises, we evalu-

ated the robustness of IRASA against noise contamination.

Figure 4 shows that the performance of IRASA in

extracting the fractal PSD deteriorated with decreasing

SNR. When the overall SNR was as low as 1, the noise

affected the high frequency range in which the measured

signal was dominated by the noise; however, the extracted
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fractal component still followed a clear power-law distri-

bution in the low frequency range. In general, IRASA

performed well with modest to high SNR in a simulation

setting.

To further test the practical utility of IRASA, we used

IRASA to differentiate fractal and oscillatory neuroelec-

trical activities observed with ECoG and MEG data. Fig-

ure 5a shows the IRASA-extracted fractal and oscillatory

PSD of the example ECoG signals recorded from one

sensor located in the frontal lobe of a macaque brain. The

fractal PSD depicted the broadband activity of the ECoG

spectrum. This broadband activity was approximately an

exponential function in the regular coordinate or equiva-

lently a linear function in the double-logarithmic coordi-

nate. The PSD of the oscillatory component, obtained by

subtracting the extracted fractal PSD from the raw ECoG

PSD, provided a clear depiction of alpha (8-13 Hz)

rhythm. Similarly, Fig. 5b, c show the separated fractal

and oscillatory components of one MEG sensor over the

occipital lobe under the eyes-closed and eyes-open

conditions, respectively. The IRASA-extracted oscillatory

component included peaks at the alpha and beta bands, as

well as the 60 Hz power-line noise. The eyes-open con-

dition had much reduced alpha power and diminished beta

power relative to the eyes-closed condition. Figures 6 and

7 show the results of the separated fractal dynamics in

different brain regions as observed with macaque ECoG

and human MEG data, respectively. These results

demonstrate the efficacy of the proposed method to extract

the fractal component from measured electrophysiological

signals.

Moreover, one can also use IRASA to obtain the spec-

trograms showing the temporal dynamics of the fractal and

oscillatory spectra by using short sliding time windows. To

demonstrate this point, we separately extracted the fractal

and oscillatory spectrograms and obtained the time courses

of the alpha power (i.e. the average power in 8–13 Hz), the

power-law exponent, the log-power intercept, as well as the

broadband power from the macaque ECoG and the human

MEG signals.
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Similar to previous studies (Olbrich et al. 2009), the

distinct behavioral states exhibited different patterns of

oscillations, especially in the alpha frequency range

(Figs. 8a, 9a). We observed much stronger alpha oscilla-

tions during eyes-closed wakefulness relative to the eyes-

open and sleep states (Fig. 9a). Interestingly, we also

found that the fractal component differed considerably

across these behavioral and arousal states. In the macaque

ECoG data (Fig. 8), we found that the power-law expo-

nent was larger in the sleep state, with a mean and the

standard deviation of 1.26 ± 0.49, than the eyes-closed

wakeful state (0.95 ±0.40) (Fig. 8b, c). For the human

MEG data (Fig. 9), the power-law exponents increased

from 0.81 ± 0.24 to 1.14 ±0.27 as the subjects fell into

sleep from eyes-closed wakefulness. We also observed

greater variance in the power-law exponent during the

sleep state than the wakeful states. Moreover, the broad-

band power also differed across these behavioral and

arousal states, being lower when the eyes were open than

that in the eyes-closed condition and being higher as the

subjects fell asleep. These results suggest that distinct

behavioral states may be characterized not only by fre-

quency-specific oscillations but also by broadband fractal

activities.

Discussions

The signal processing technique (IRASA) presented here

allows the separation of fractal and oscillatory components

of neurophysiological signals in the spectral domain, with

the assumption that neural recordings are formed by the

sum of scale-free and frequency-specific components.

Arguably, such separated oscillatory and scale-free

dynamics may report useful information about rhythmic

and arrhythmic dynamics emerging from interacting neural

circuits. When applied to various electrophysiological

signals, the values and dynamics of the power-law expo-

nent and broadband power may provide complementary

perspectives to those that report on neuronal oscillations.

However, it awaits future studies to investigate whether the

scale-free broadband component indeed originates from
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neuronal population activities with fractal dynamics, as

well as the specific functional role of such activities.

In the following, we discuss multiple methodological

considerations as well as speculative implications and

applications to neuroscience research.

Comparison with CGSA

This work is inspired by the earlier CGSA methods (Ya-

mamoto and Hughson 1991, 1993). However, the cross-

spectral analysis in CGSA suffers from theoretical limita-

tions (see the online supplementary material). The differ-

ence between IRASA and CGSA has the following aspects.

Firstly, IRASA is based on the auto spectra of the up-

sampled and down-sampled signals, whereas CGSA is

based on the magnitudes of the cross spectra between the

original signal and its up-sampled and down-sampled

versions. This difference is critical in that it enables

IRASA to relocate the spectral energy associated with

oscillations away from their occurring frequencies, while

part of such energy always remains at the original oscil-

lation frequencies for CGSA.

Secondly, IRASA uses non-integer (irregular) resam-

pling, whereas CGSA, as in (Yamamoto and Hughson

1991, 1993; He et al. 2010), uses integer (regular) resam-

pling. Although it requires time-series interpolation with

slightly higher computation demand, the irregular resam-

pling is more advantageous than regular resampling in that

the spectra of the resampled oscillations do not overlap

with the original spectrum when the oscillatory component

occurs at multiple harmonic frequencies, which is often the

case in realistic neural signals. Although it has not been

used with CGSA in published studies (to the best of our

knowledge), the irregular resampling is expected to also

benefit CGSA in addressing issues related to harmonic

frequencies.

Thirdly, IRASA uses a number of non-integer resam-

pling factors, whereas CGSA uses only one, at least as

described in (Yamamoto and Hughson 1991, 1993; He

et al. 2010). Combined with the two features mentioned

above, this feature utilizes the fact that changing the

resampling factor in IRASA leads to relocation of the

oscillation-related energy to different frequencies. It fol-

lows that taking the median of the results obtained with

different resampling factors enables IRASA to almost

completely exclude the contribution and interference from

the oscillatory component in estimating the spectrum of the

fractal component. However, this similar ‘trick’ does not

benefit CGSA in the same way (Figs. 3, S2).

Choosing the Resampling Factors

We choose the resampling factor (h and 1/h) as non-integer

numbers for irregular resampling of the original time ser-

ies. For any h[ 0, either h or 1/h is greater or equal to 1.

Without loss of generality, we choose h[ 1. A large

h value would lead to greater dispersion of the spectra of

the resampled oscillatory component (Fig. 2). However, it

would limit the bandwidth of the final estimate of the

fractal spectrum, because the bandwidth is reduced by a

factor of h following the resampling. For example, for a

typical EEG sampling frequency of 1000 Hz, the band-

width is 500 Hz. A resampling factor of 2 would reduce the

bandwidth to 250 Hz but still covers the frequency range of

interest. If the original sampling rate is overly high, it is

more preferable to use a wider range for h. Within any

range of choice, one may further choose more h values

such that taking the median would likely yield a more

accurate and robust estimate of the fractal PSD yet at the

cost of increasing computational time. Balancing the above

considerations, we choose the value of h between 1.1 and

1.9 with a 0.05 increment. Although such a choice is

pragmatic and not entirely principle-driven, it has given

rise to robust results in extracting the scale-free broadband

activity in both simulation and experimental data included

in this study.
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For any choice of the h values, one can zero-pad all

resampled time series to the same length equal to the power

of 2. This will permit FFT with the same number of fre-

quency points for all resampled signals and allow for

subsequent computation in the frequency domain.

Multi-Scale Fractal Dynamics

One assumption for both IRASA and CGSA is that the

fractal dynamics obeys a power law. It should be noted that

this assumption does not always hold true in practice when

a very wide frequency range is of interest. Some neuronal

signals have different frequency scaling properties for

different frequency ranges (Hwa and Ferree 2002; Miller

et al. 2009; Robinson 2003). We found that IRASA per-

formed well even for such multi-scale fractal signals,

although it blurred the ‘breakpoints’ where the frequency

ranges of distinct fractal components intersected (Fig. 3c).

The practical utility of IRASA for multifractal time series

awaits further investigation and should be taken with

caution as of now.

Fractal Versus Scale-Free

The terms of fractal and scale-free have often been used or

discussed interchangeably. Although these two concepts

are closely related, there are some conceptual distinctions

perhaps worth noting. For an extreme example, a deter-

ministic signal (e.g. a linear drift) has the scale-free prop-

erty and obeys a 1/f power law. But it is obviously of little

interest for brain research and may likely be mistaken as

the spectral characteristic of the brain’s arrhythmic

activity. Therefore, another important feature of the scale-

free activity has to lie in its phase distribution. A random

fractal process should possess a random phase distribution

within [0, 2p] (Yamamoto and Hughson 1993), whereas

fractal processes are not all characterized by random phase

distribution. The IRASA method serves to extract the PSD

of the signal components that comply with the scale-free

property, as expressed by Eqs. (2) and (3). Such extracted

spectral components contain no phase information, and

may or may not reflect a fractal process of biological

significance.

Magnitude Versus Phase

Of note, IRASA, as well as CGSA, can only separate the

power spectra of the fractal and oscillatory components of

neurophysiological signals. It is currently difficult, if pos-

sible at all, to separate these components in the time

domain or uncover their phase differences or relationship.

This imposes a technical barrier for investigating phase–

phase and phase-amplitude couplings of fractal dynamics

between different frequency points or between different

spatial locations. Future technical development is highly

desirable to resolve this barrier.

Other Alternative Solutions

In addition, it is also of future interest to compare the

spectral analysis method with other alternative time-series

analysis methods, e.g. DFA (Peng et al. 1995) or its recent

variations such as adaptive fractal analysis (AFA) (Gao

et al. 2011). Note that although IRASA is based on the

frontal

occipital

parietal

temporal

frontal parietal

occipitaltemporal

Total PSD
Fractal PSD

eye-closed wakefulness sleep

frontal
parietal occipital

temporal

log frequency  (Hz)

10
0

10
2

10
4

lo
g

 P
SD

 (W
/H

z)

10
0

10
2

10
4

10
0

10
2

10
1

10
0

10
2

10
1

10
0

10
2

10
1

10
0

10
2

10
1

10
0

10
2

10
1

10
0

10
2

10
1

10
0

10
2

10
1

10
0

10
2

10
110

0

10
2

10
4

lo
g

 P
SD

10
0

10
2

10
4

(A) (B) (C)

Fig. 6 Extracted PSD of fractal dynamics from macaque ECoG data

of 128 sensors. a The colored dots are the 128 sensor in different

brain regions. b Averaged fractal power spectra in different brain

regions in the eyes-closed awake condition. c Averaged fractal power

spectra in the sleep condition (Color figure online)

22 Brain Topogr (2016) 29:13–26

123



Fourier transform, similar concepts might be useful for

other time–frequency analysis methods, such as those

based on wavelet transform.

Implication to Neuronal Oscillations

One motivation of this study is to better extract neural

oscillations from electrophysiological signals. Here we

assume that oscillations co-occur with the broadband

activity that approximately follows a power-law distribu-

tion. As such, the temporal modulation in power or ampli-

tude of oscillatory activity is mixed with the modulation of

the underlying broadband activity. Both modulations con-

tribute to the amplitude or power envelops of band-limited

signals, or the power fluctuation observed with the time–

frequency analysis. Without separating oscillatory and

fractal activities, the fluctuation of band-limited signals may

not be entirely specific to the frequency band of interest, but

contains a variable fraction owing to the frequency non-

specific broadband modulation. Arguably, separating the

fractal component may provide more accurate estimation of

the modulation of neuronal oscillations. This is beneficial

when one is interested in the amplitude (not phase) rela-

tionship between distinct frequency bands, or in the con-

tributions of various frequency bands to other brain signals,

such as neuronal spikes or hemodynamic signals.

Unlike the ideal oscillations assumed in our model

Eq. (1), realistic oscillatory activity is not always localized

in frequency, but manifests itself in a frequency band. In

such cases, the nominal fractal and oscillatory spectra,

extracted by using IRASA (and likewise CGSA), may still

contain residuals that comprise their corresponding spectral

behaviors from being strictly scale-free or frequency spe-

cific. To partly overcome this, one could choose a larger

range of resampling values as permitted by the original

sampling frequency and the desired overall frequency

range of interest, as aforementioned for the practical choice

of the resampling factors.
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Implication to Neuronal Fractal Activity

The fractal dynamics, as the broadband activity underneath

neural oscillations, fluctuates over time in a way that seems

functionally relevant. For example, it varies by voluntary

eyes opening and closing in terms of the broadband power

and the power-law exponent (Fig. 9). As such, the broad-

band fractal activity is at least not pure noise, and likely

bears some functional significance. However, where the

fractal dynamics comes from and how it serves brain

functioning remain poorly understood and await future

research (He et al. 2010; He 2014). For example, it is of

potential interest to investigate inter-regional correlations

in the temporal fluctuation of fractal dynamics, and to

compare the resulting correlational patterns against those

based on oscillatory dynamics or the structural networks

observed with diffusion MRI. This would help address the

network origin of fractal versus oscillatory dynamics. It is

also of potential interest to investigate the spatiotemporal

characteristics of fractal dynamics during not only simple

behavioral tasks but also complex cognitive tasks in a rich

and naturalistic behavioral context. This would help

address the functional significance of fractal dynamics.

However, the proposed IRASA method is not intended

to address the generative mechanism of the scale-free

broadband signal or the frequency-specific narrowband
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signal observed in neural recordings. As a signal process-

ing method, the IRASA method by itself offers little

information about the theoretical basis and functional role

of the apparent scale-free or oscillatory activity in the

context of neural synchrony, coupling or computation.

Differentiate Functional States with Fractal

Characteristics

A large amount of literature has reported on neural oscilla-

tions in a variety of brain states (Başar et al. 2001; Buzsáki

and Draguhn 2004; Gray 1994; Hanslmayr et al. 2011;

Lakatos et al. 2008; Rinzel and Ermentrout 1998; Schabus

et al. 2011). For example, the brain’s vigilance and attention

level has been measuredmainly by the oscillation power of a

single frequency band, e.g. the alpha band (8–13 Hz), or the

relative amplitudes of several frequency bands, especially

the alpha, theta and delta bands (Olbrich et al. 2009; Wong

et al. 2013). Combined with other event-like signatures, e.g.

k-complex, spindles, oscillatory patterns have been serving

as the main clues for sleep staging.

However, how the broadband fractal dynamics varies

across behavioral states remains poorly understood. Fol-

lowing IRASA, one can quantify the broadband fractal

characteristics by using the power-law exponent (He et al.

2010; He 2014), the intercept of the power-law function at

zero log-frequency, and the broadband power (Miller et al.

2009) as a linear function of the exponent and the intercept.

These quantities collectively define the feature space for

potential classification of various functional states based

merely on the fractal characteristics. As an initial proof of

concepts, the broadband power of fractal dynamics differed

notably across behavioral and arousal states: higher in

sleep than wakefulness, and higher in eyes-closed condi-

tion than the eyes-open condition.
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