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Broadband Electrophysiological Dynamics Contribute to
Global Resting-State fMRI Signal
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Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain’s intrinsic functional networks in health and
disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a
challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to
investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband
and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The
power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously
acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by �5 s. The levels of
global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal
states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in
scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neuro-
physiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and
vigilance levels.
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Introduction
fMRI has been used increasingly to uncover large-scale neural
networks with correlated spontaneous activity in the absence of
any overt task (Biswal et al., 1995). These resting-state networks
(RSNs) mostly appear modular (Van Dijk et al., 2010), arise from
structural connections (Greicius et al., 2009), persist across be-
havioral states (Horovitz et al., 2008), and resemble task activa-

tion patterns (Smith et al., 2009), thereby being recognized to
report on the brain’s intrinsic functional organization (Fox and
Raichle, 2007; Power et al., 2011; Yeo et al., 2011).

However, modular RSNs may be obscured by nonspecific
global fluctuations in spontaneous fMRI activity (Fox et al.,
2009). In practice, the global fMRI signal is often regressed out in
preprocessing, but nevertheless creates confounding effects
(Murphy et al., 2009; Saad et al., 2012) or alters clinical inferences
(Yang et al., 2014). The origins of the global fMRI signal are
elusive, with previous studies emphasizing the contributions
from ongoing neuronal (Schölvinck et al., 2010) or non-neuronal
(Birn et al., 2006; Shmueli et al., 2007) processes. How to charac-
terize, distinguish, and interpret global versus modular RSN re-
mains a lingering and fundamental challenge because fMRI
measures the indirect hemodynamic signature of neural activity
(Logothetis, 2008).

To address this issue, we used neurophysiological signals in
multiple macroscopic scales, including electrocorticography
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Significance Statement

This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power
fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontane-
ous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new
hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity
observed with resting-state fMRI, respectively.
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(ECoG), magnetoencephalography (MEG), and electroencepha-
lography (EEG). The common spectral, temporal, and spatial
characteristics shared across such multilevel electrophysiological
signals were identified and compared with those of resting-state
fMRI. Our emphasis was on testing the hypothesis that global
resting-state fMRI activity has a neural origin that manifests itself
as the broadband power fluctuation of scale-free neurophysiol-
ogy observable on the cortical or even head surface. Several pre-
vious findings led us to raise this hypothesis. Widespread fMRI
activity was found to correlate with the powers of local field po-
tential (LFP) consistently across a broad range of frequencies
(�40 Hz; Schölvinck et al., 2010). Cortical electrical activity was
predominantly arrhythmic and scale free in various arousal states
(He et al., 2010). Scale-free neurophysiological signals were well
characterized by power–law spectral distributions, for which
changes in the broadband power of LFP, ECoG, and EEG, were
correlated consistently with neuronal spiking activity during
tasks or at rest (Manning et al., 2009; Miller et al., 2009; Whit-
tingstall and Logothesis, 2009; Ray and Maunsell et al., 2011).

To test this hypothesis, we also used a recently developed com-
putational tool (Wen and Liu, 2016) to separate scale-free and
oscillatory components of neural signals so that the fluctuation
and correlation of scale-free activity were assessed without any
interference from brain rhythms and vice versa. Our results sug-
gest that scale-free and oscillatory neural processes contribute
differentially to resting-state fMRI: the former underlies the
global signal, whereas the latter supports modular networks.

Materials and Methods
Data acquisition
EEG-fMRI. EEG and fMRI data were acquired simultaneously from 19
healthy volunteers (age 28 � 10, 9 female) in the eyes-closed resting state
for 10 minutes. The EEG data were collected from 31 scalp channels
(together with one unipolar ECG channel) with the standard montage
and an MR-compatible recording system (BrainAmp MR Plus; Brain-
Products). The EEG signals were referenced to the FCz electrode and
sampled continuously at 5 kHz with a resolution of 0.5 �V/bit for a 16-bit
amplifier and an analog bandwidth from 0.1 to 250 Hz. The EEG sam-
pling clock was synchronized with an external reference signal obtained
from the 10 MHz master clock of the MRI scanner. A slice-trigger signal
that marked the onset time of every fMRI slice acquisition was recorded
based on a TTL signal from the scanner. The fMRI acquisition was evenly
spaced with equal delay between each slice acquisition.

The MRI and fMRI images were collected from a 3 tesla Signa MRI
system (General Electric) equipped with a 16-channel receiver-only
phase-array coil (NOVA Medical). Whole-brain fMRI data were ac-
quired using a single-shot gradient recalled echo-planar imaging (EPI)
sequence with 75° flip angle (FA), 30 ms echo time (TE), 1.5 s repetition
time (TR), 30 axial slices with 4 mm thickness, 220 � 165 mm 2 field of
view (FOV) for 64 � 48 matrix size, and sensitivity encoding (SENSE)
parallel imaging with an acceleration factor of two. The last imaging
volume was acquired with slightly longer TE to measure the spatial vari-
ation of the B0 field. T1-weighted anatomical images covering the whole
head were acquired using a 3D magnetization prepared rapid gradient
echo (MPRAGE) sequence with 12° FA, 2.25 ms TE, 5 ms TR, 725 ms
inversion time, 200 sagittal slices, and 1 mm 3 isotropic resolution.

MEG. MEG data were a part of the data from our previous study (Liu
et al., 2010). Data from three human volunteers were used for the pur-
poses of this study. Each subject was instructed to lie in a dark and
magnetically shielded room. The experimental paradigm started with
two cycles of alternating eyes-closed and eyes-open wakeful resting states
and then the subjects fell asleep naturally. The total recording period
including all three states was 40 – 45 min. The MEG data were recorded
from 275 radial first-order gradiometer channels covering the entire
head with a CTF MEG system. Signals were sampled at 600 Hz and
background noise was removed online.

ECoG. Macaque ECoG data were publicly available on the website of
Project Tycho (http://neurotycho.org). These data were originally ac-
quired from 128 sensors covering the entire lateral surface of the left
macaque cortex with a sampling rate of 1 kHz using a Cerebus recording
system (Blackrock Microsystems). Data were referenced to an electrode
between the silicone sheet of the subdural electrodes and the dura mater
with the platinum side facing the dura and the ground electrode in be-
tween the dura and skull with the platinum side facing the skull (for
details, see Nagasaka et al., 2011). In this study, we downloaded and
selected the data from two macaques (denoted as macaque C and G) in
three behavioral states: eyes-closed wakefulness, eyes-open wakefulness,
and sleep. For macaque C, there were ECoG data from six sessions in
eyes-closed wakefulness, three sessions in eyes-open wakefulness, and
three sessions in sleep. For macaque G, there were five sessions in eyes-
closed wakefulness, two sessions in eyes-open wakefulness, and three
sessions in sleep. Every session contained 5 or 10 min ECoG time series
from 128 channels.

Data preprocessing
EEG. The recorded EEG data contained gradient and cardiac ballistic
artifacts from concurrent fMRI acquisition. Such artifacts were removed
using software developed in-house (Liu et al., 2012a) and publicly avail-
able (https://purr.purdue.edu/publications/1936). After down-sampling
the data to 1 kHz, a third-order polynomial function was used to model
and fit the slow trend in EEG time series and then removed channel by
channel. The detrended data were further low-pass filtered with a 250 Hz
cutoff frequency.

fMRI. The EPI images were corrected for geometric distortion using
the B0 field map. The EPI time series were further corrected for slice
timing differences and subtle head motion using FSL (FMRIB, Oxford,
UK) and then were detrended by regressing out the third-order polyno-
mial function that modeled the slow signal drift. A rigid-body trans-
formation was estimated and used to align the EPI images to the
T1-weighted MPRAGE images using align_epi_anat.py in AFNI (Na-
tional Institute of Mental Health–National Institutes of Health). The T1-
weighted images were transformed into the standard MNI space using a
nonlinear registration tool (FNIRT) in FSL. Through this nonlinear trans-
formation, the EPI data were normalized to the MNI space and resampled to
3 mm isotropic resolution. The normalized EPI data were spatially smoothed
with a 3D Gaussian kernel with 4 mm full width at half maximum. Finally,
every voxel time series was demeaned and standardized.

MEG. Physiological noises of cardiac or respiratory origin were re-
moved from MEG raw data using independent component analysis, as
described in our previous study (Liu et al., 2010). Specifically, the com-
ponents originating from cardiac or respiratory activity were identified
in a semiautomatic manner. An autocorrelation function was computed
based on the time course of each component. A component was identi-
fied as a cardiac artifact if a positive peak autocorrelation coefficient �0.3
was found at a time lag between 0.6 and 1.5 s or as a respiratory artifact if
a positive peak correlation coefficient �0.3 was found at a time lag be-
tween 2.5 and 5 s. These particular intervals were chosen to cover the
expected ranges of the cardiac and respiratory rate. The identified artifact
components were inspected visually and confirmed and then excluded.
The remaining components were reassembled to yield the denoised MEG
data, and then the MEG signals were low-pass filtered with a 250 Hz
cutoff frequency. As described previously and used elsewhere (Horovitz
et al., 2008; Liu et al., 2010), the sleep period was determined using the
inverse index of wakefulness (IIoW), defined as the ratio of the power in
the delta and theta bands to that of the alpha band computed over 2 min
intervals. This was because transition from wakefulness to light sleep was
characterized by an attenuation in the alpha rhythm and an elevation in
the theta and delta rhythms in both EEG and MEG (Simon et al., 2000;
Olbrich et al., 2009). The sleep period was initially determined as a sus-
tained period (�20 min) in which IIoW was twice as much as that during
eyes-closed wakefulness and this was inspected visually and confirmed by
the authors.

ECoG. A third-order polynomial trend in ECoG time series was re-
moved channel by channel. The detrended data were further low-pass
filtered with a 250 Hz cutoff frequency.
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Data analysis
Separating the power spectrograms of scale-free and oscillatory electrophys-
iology. For ECoG, MEG, and EEG, we used the irregular-resampling
auto-spectral analysis (IRASA) to separate the power spectrograms of
underlying scale-free and oscillatory electrophysiology (Wen and Liu,
2016). A sliding time window was defined to be 3 s long and step by 1 s for
ECoG and MEG and 0.125 s for EEG. For every time window, the pre-
processed ECoG, MEG, or EEG time series was separated into two
components reflecting scale-free and oscillatory neural dynamics. The
scale-free component is arrhythmic and not confined to any specific time
scale (Yamamoto et al., 1991); its power spectrum follows a power-law
distribution, shown as a descending line on the log–log plot (Miller et al.,
2009; He, 2014). In contrast, the oscillatory component contains
rhythms indicative of neural dynamics with characteristic time scales
(Buzsáki and Draguhn, 2004); it typically exhibits one or multiple spec-
tral peaks at specific frequencies. Based on their distinct temporal and
spectral characteristics, we were able to separate the scale-free and oscil-
latory components in the power spectrum of the neurophysiological
signal.

Briefly, we irregularly resampled a neural signal by multiple pairs of
non-integer factors. For each pair, one was chosen as a value between 1.1
and 1.9 with 0.05 increments and the other was chosen to be its recipro-
cal. The former was used to up-sample the signal, whereas the latter was
used to down-sample the signal by the same factor. We then computed
the geometric mean of the auto-power spectra of every pair of the resa-
mpled (i.e., up-sampled and down-sampled) signals. In the resulting
spectrum, the power associated with the oscillatory component was re-

distributed away from its original (fundamental and harmonic) frequen-
cies by a frequency offset that varied with the resampling factor, whereas
the power solely attributed to the scale-free component remained the
same power-law distribution independent of the resampling factor. By
taking the median of the auto-power spectra of the variously resampled
signals, we extracted the power spectrum of the scale-free component;
the difference between the original power spectrum and the extracted
broadband scale-free spectrum was an estimate of the power spectrum of
the oscillatory component (see Fig. 1 for an example). Detailed proce-
dures were described in our previous publication and tested with com-
puter simulation and experimental data (Wen and Liu, 2016). Applying
IRASA to electrophysiological signals within every sliding window, we
obtained the temporally fluctuating scale-free and oscillatory power
spectra; that is, time–frequency representations or spectrograms.

Broadband and narrow-band power fluctuations. From the obtained
spectrogram of the scale-free component of ECoG, MEG, or EEG, we
extracted the temporal fluctuation of the broadband power for every
recording channel. Specifically, for a given channel and a given time
window, the power spectrum of the scale-free component was trans-
formed to the double logarithmic scale. The scale-free spectrum did not
exhibit as a strict line in log–log scale, but as two lines that joined at a
“knee” frequency around 15 Hz. Therefore, we separated the frequency
points into two ranges: one for the low frequencies (LFs) from 1 to 15 Hz
and the other for the high frequencies (HFs) from 15 to 100 Hz. In each
of these two ranges, the frequency points were resampled to be evenly
distributed in terms of the log frequency; the log power was averaged
across the resampled frequency points, yielding the average log power as
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Figure 1. Separation of oscillatory and scale-free ECoG. A, Scale-free and oscillatory components of macaque ECoG signals were separated into broadband and narrow-band spectral distributions
in the frequency domain. B, From the oscillatory spectrogram, band-limited power fluctuations were extracted from a specific frequency of interest (e.g., alpha). From the scale-free spectrogram,
broadband power fluctuations were extracted from either the LF range (1–15 Hz) or the HF range (15–100 Hz).
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a measure of the broadband power (BBP) in the corresponding fre-
quency range. The BBP time series indicates the power fluctuation of
frequency-independent scale-free electrophysiology. These procedures
were also used in previous studies by us (Wen and Liu, 2016) and others
(Miller et al., 2009).

From the separated spectrogram of the oscillatory component of
ECoG, MEG, or EEG, we extracted the temporal fluctuation of the band-
limited power for the alpha band (8 –13 Hz). In this study, we only
focused on the alpha-band-limited power (BLP) because a spectral peak
in the alpha band was observed consistently in our datasets (Liu et al.,
2012b). The BLP time series indicates the power fluctuation of
frequency-specific oscillatory electrophysiology.

We also examined the relationship between the power fluctuations of
scale-free electrophysiological signals in the LF and HF ranges. For this
purpose, the cross-correlation between LF-BBP and HF-BBP was calcu-
lated channel by channel for ECoG and MEG. For every channel, the
significance of the correlation was assessed by calculating the p-value
with the degree of freedom (DOF) equal to the number of nonoverlap-
ping time windows (in the time–frequency analysis) � 2 (DOF � 98 or
198 for the 5 min or 10 min ECoG or DOF � 398 for MEG with Bonfer-
roni correction to account for the number of channels and p � 0.001).
The percentage of significantly correlated channels was further calcu-
lated for each session and each arousal state. Note that, for the human
MEG data, we only used the sleep period for calculating the cross-
correlation such that the correlations were only attributed to activity
fluctuations within a single arousal state instead of being dominated by
activity differences among different states.

We also addressed whether the level of fluctuation in scale-free elec-
trophysiology differed between different arousal states. For each ECoG or
MEG channel, the fluctuation level of BBP was quantified as the ratio of
the temporal SD to the temporal average. The difference in the fluctua-
tion level between eyes-closed wakefulness and sleep was evaluated and
tested for significance. Specifically, the BBP time course at each channel
was first divided by its temporal average. For such “normalized” signals,
a two-sample F test was used to test the statistical significance of the
difference in variance between eyes-closed wakefulness and sleep
( p � 0.01 with Bonferroni correction to account for the total number of
channels). To sum across channels, we further calculated the percentage
of the channels with significant between-state differences in the BBP
fluctuation level.

Correlation in scale-free versus oscillatory ECoG and MEG. After obtain-
ing the temporal fluctuations of BBP (i.e., scale-free activity) and BLP
(i.e., oscillatory activity) for every ECoG or MEG channel, we analyzed
the spatial patterns of temporal correlations across channels. Such cross-
correlations were analyzed for each pair of different channels and shown
as a correlation matrix in which each row corresponds to a map of cor-
relations to a seed channel. Example correlation maps with specific seed
channels were displayed for illustration. The statistical significance of the
cross-channel correlation was assessed with the DOF as the number of
nonoverlapping time windows � 2 (DOF � 98 or 198 for ECoG, or
DOF � 398 for MEG) and Bonferroni correction for multiple compari-
sons over all different pairs of channels with p � 0.001.

We further calculated the percentage of significantly correlated pairs
of channels and assessed the inhomogeneity of pairwise correlations as
the ratio of their SD to their average. For the ECoG data, these metrics
were calculated separately for each arousal state (i.e., eyes-open and eyes-
closed wakefulness and sleep). For the MEG data, they were only calcu-
lated for the sleep state because the period in either the eyes-open or
eyes-closed state was too short (2 min) to yield reliable correlation mea-
sures. Note that a higher percentage of significantly correlated channels
indicates a greater degree of global correlations. A lower level of inhomo-
geneity in such correlations suggests a more nonspecific (as opposed to
modular) correlational structure. Altogether, these two metrics served to
quantify the degree of nonspecific and global correlation observed with
either scale-free or oscillatory electrophysiology.

Further, we investigated whether the degree of global and nonspecific
correlation differed between the scale-free (i.e., BBP) and oscillatory (i.e.,
BLP) components of electrophysiology or across different arousal states.
The percentage or inhomogeneity metrics based on BBP (i.e., scale-free)

were compared against those based on BLP (i.e., oscillatory) across dif-
ferent sessions in the same state. Similarly, these metrics observed with
the ECoG BBP were also compared between awake and sleep states. Based
on the observation from the exploratory seed-based correlation analysis,
we hypothesized that the degree of global and nonspecific correlation was
higher in the scale-free component compared with the oscillatory com-
ponent and during sleep compared with during wakefulness for the scale-
free component. To test both hypotheses, one-tailed nonparametric
Wilcoxon signed-rank test (or t test) was used to evaluate the significance
of the difference in the percentage (or inhomogeneity) with p � 0.05. A
nonparametric test was used because these variables were non-Gaussian
or bounded.

In addition, we evaluated the strength of global synchronization in
scale-free ECoG during the eyes-open, eyes-closed, and sleep states. Spe-
cifically, a global correlation map was obtained by calculating the cross-
correlation between the BBP fluctuation at every channel and the global
BBP fluctuation obtained by averaging across all channels. Note that we
referred to the latter as the “global signal” because the global resting-state
fMRI activity is defined in the same way. The resulting channel-wise
correlation coefficients (converted to the z-score) were further averaged
across channels to yield a single measure of the strength of global syn-
chronization in scale-free activity for each session and each arousal state.
We then compared the differences in the strength of global synchroniza-
tion between the sleep and eyes-closed states and between the eyes-closed
and eyes-open states. The significance of such differences was assessed by
paired t test with p � 0.05.

Cross-correlation between scale-free EEG and global fMRI. We used con-
currently acquired fMRI and EEG data to analyze the coupling between
scale-free electrophysiology and global fMRI. From each EEG sensor, the
scale-free and the oscillatory spectrograms were separated using the
aforementioned IRASA method. Averaging the spectrograms from all
sensors yielded the “global” scale-free spectrogram and the oscillatory
spectrogram. From these global spectrograms, two power fluctuations
were obtained for any specific frequency point: one from the scale-free
component and the other from the oscillatory component. Both power
fluctuations were resampled to the time points of the fMRI signal. The
global fMRI signal was obtained by averaging the signals from all brain
voxels. The cross-correlation between the global fMRI and the global
power fluctuation was evaluated at every frequency for either the scale-
free or oscillatory component of EEG with varying time lags from �30 to
30 s. The resulting correlations were first calculated for each subject and
then averaged across subjects.

For the scale-free component of EEG, the frequency-specific cross-
correlation functions were further averaged across all frequencies to yield
a transfer function that presumably linked the scale-free EEG to the
global fMRI. For comparison, another transfer function was also esti-
mated in an attempt to link the oscillatory EEG to the global fMRI. The
difference between these two transfer functions was tested for signifi-
cance for each time point between �30 and 30 s using paired t test across
19 subjects (DOF � 18, p � 0.001 without correction). With this statis-
tical test, we aimed to address whether a frequency-independent cou-
pling between EEG and fMRI is unique for the scale-free component of
EEG, but not for its oscillatory component.

In addition, we calculated the cross-correlation between the global
fMRI signal and the broadband power fluctuation of the scale-free com-
ponent at every EEG channel. Such correlations were calculated at 2 time
lags (5 s and 12.5 s) by which fMRI was set to be delayed from EEG. The
significance of such correlations (converted to the z-score) was evaluated
channel by channel using one-sample t test across 19 subjects (DOF � 18,
p � 0.005, Bonferroni corrected for the total number of channels). For
comparison, we also evaluated the cross-correlation between the global
fMRI and the BLP fluctuation.

To further examine whether scale-free EEG contributes to the fMRI
signal globally, we evaluated the cross-correlation between the global
broadband power fluctuation of scale-free EEG and the fMRI signal of
every voxel with two time lags (5 and 12.5 s). Statistical significance of the
cross-correlation (converted to the z-score) was tested for every voxel
using the one-sample t test (DOF � 18, p � 0.005 without correction).
For comparison, cross-correlation was also evaluated between the aver-
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age alpha-band power fluctuation (obtained by averaging the alpha BLP
fluctuations across channels) and the fMRI signal. We also compared the
percentage of voxels where the fMRI signals were significantly correlated
with the average BBP signal with the average alpha-BLP signal and tested
the significance of this difference using nonparametric Wilcoxon signed-
rank test with p � 0.01.

Results
We used a recently developed IRASA method (Wen and Liu,
2016) to separate the broadband scale-free and band-limited os-
cillatory components from the power spectrum of electrophysi-
ological activity observed with macaque ECoG (n � 2), and
human MEG (n � 3) or EEG (n � 19) acquired simultaneously
during fMRI.

Power-law distribution of arrhythmic electrophysiology
Figure 1A shows the separated scale-free and oscillatory power
spectra for an example ECoG signal from a macaque brain during
eyes-closed wakefulness. The oscillatory component revealed
prominent delta (0 – 4 Hz) and alpha (8 –13 Hz) rhythms. The
scale-free component showed a broadband power distribution
that could be modeled by a piecewise power-law function. In the
log–log scale, this function was shown as two descending lines
intersecting at a “knee” frequency of 15 � 4 Hz across channels,
modalities, and arousal states. Therefore, we set out to character-
ize the broadband scale-free component separately for the LF
(1–15 Hz) and HF (15–100 Hz) ranges using BBP, which was the
average log power quantified based on the power-law fit of the
broadband spectral distribution in the corresponding frequency
range (Miller et al., 2009; Wen and Liu, 2016).

Slow-power fluctuation of scale-free neural activity
To examine both narrow-band and broadband spectral changes
over time, we applied IRASA to the ECoG signal in a 3 s sliding
window with a 1 s increment, yielding the separated time–fre-

quency representations (i.e., spectrograms) of the oscillatory and
scale-free components (Fig. 1B). For the oscillatory component,
the spectral change was frequency specific, giving rise to BLP
signals with characteristic carrier frequencies (e.g., alpha). For
the scale-free component, the powers at individual frequencies
varied in a coherent way that followed the power-law relation-
ship. The fluctuation level of BBP was 11.9 � 3% (or 12.1 � 4%)
for the LF (or HF) range during sleep, whereas it was 7.94 � 1.7%
(or 9.1 � 3.6%) during eyes-closed wakefulness. Significant dif-
ferences (p � 0.01, two-sample F test with Bonferroni correc-
tion) between these two states in terms of their LF (or HF) BBP
fluctuation levels were observed for 85 � 4% (or 73 � 13%)
channels. Because both BLP and BBP fluctuated with similar time
scales (mostly �10 s) as spontaneous fMRI signals, the scale-free
and oscillatory component of electrophysiology were both possi-
ble neural correlates to resting-state fMRI.

Scale-free ECoG and MEG are globally correlated
We set out to evaluate the interregional temporal correlation in
oscillatory or scale-free spectral fluctuations for various arousal
states, including eyes-open and eyes-closed wakefulness and
sleep. With 128-channel macaque ECoG recordings from the lat-
eral cortical surface, we first conducted a seed-based correlation
analysis similar to the one used widely for resting-state fMRI. For
a seed location in the motor cortex, as an example, the alpha-BLP
signals were correlated within the local area or network, whereas
the LF-BBP signals were globally synchronized (Fig. 2A). For LF
BBP, 87 � 9% of channels were significantly correlated (p �
0.001, Bonferroni corrected) with the selected seed channel, sig-
nificantly greater than 19 � 15% for alpha BLP (p � 0.0279,
paired Wilcoxon signed-rank test). For any seed channel, �80%
of all pairs of channels were significantly correlated (p � 0.001,
Bonferroni corrected) in BBP during wakefulness and further
increased to �90% during sleep, being significantly higher than
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those for BLP (p � 0.01 during wakefulness, p � 0.05 during
sleep, paired Wilcoxon signed-rank test; Fig. 2B). The pairwise
correlations in BBP were significantly less inhomogeneous than
those in BLP (p � 0.001, paired t test; Fig. 2B). In addition, the
correlations in BBP were significantly more global and nonspe-
cific during sleep than during eyes-open or eyes-closed wakeful-
ness (p � 0.05, paired Wilcoxon signed-rank test for percentage
and t test for inhomogeneity; Fig. 2B).

To further assess the level of global synchrony independently
of the seed location, we calculated the cross-correlation in the
LF-BBP signal between every ECoG channel and the average
across all channels. Such correlations to the global signal were
generally high and widely distributed. Although the pattern of
global synchrony was preserved across different arousal states
(Fig. 2C), the level of global synchrony varied across states, being
stronger during sleep than during wakefulness with eyes closed or
open (Fig. 2D). Compared with sleep, the global correlation in
eyes-closed wakefulness was lower by 	r � �0.137 (p � 0.014,
paired t test); relative to eyes-closed wakefulness, the global cor-
relation in eyes-open wakefulness was further lower by 	r �
�0.048 (p � 0.018, paired t test). Similar findings were also
observed with the HF-BBP. The HF-BBP and LF-BBP were also
found to covary at many ECoG channels over nearly the entire
lateral surface of the cortex in eyes-open, eyes-closed, and sleep
states (Fig. 3A,B), suggesting a common source of modulation
affecting both frequency ranges.

We repeated the above analysis for 274-channel whole-head
MEG recordings when human subjects naturally fell asleep from
eyes-open and eyes-closed wakefulness. As found with macaque
ECoG, the LF and HF BBP were found to covary at 98% of chan-
nels in sleep state. The LF (or HF) BBP of scale-free MEG activity
not only varied across arousal states, but also fluctuated within
each state to a stronger degree during sleep than during wakeful-
ness (Fig. 4A). The fluctuation level of LF-BBP or HF-BBP was
significantly higher (p � 0.01, two-sample F test with Bonferroni
correction) in the sleep state (9 � 0.9% or 7 � 1%) than in the
eyes-open state (6.8 � 0.8% or 4.7 � 0.7%) or eyes-closed awake
state (7 � 1% or 5 � 1.3%) for 98% of channels. In addition, the

correlation structure and pattern tended
to be global for the power fluctuation of
the scale-free component but regional for
the oscillatory component (Fig. 4B). Dur-
ing sleep, 97 � 1% (or 98 � 1.6%) of the
total pairs of different MEG channels were
significantly correlated in LF-BBP (or HF-
BBP), whereas it was 41 � 9% for BLP.
The pairwise correlations in LF-BPP (or
HF-BBP) were also more nonspecific,
showing significantly lower levels of inho-
mogeneity than that for BLP (p � 0.0024
for LF-BBP vs BLP or p � 0.004 for HF-
BBP vs BLP, paired t test).

In interpreting the above results, it was
possible that the observed correlational
differences might reflect the difference in
signal-to-noise ratio (SNR) between dif-
ferent signals or states instead of a genuine
signal relationship. Although this possi-
bility was difficult to rule out, our obser-
vations could not be entirely due to the
difference in SNR. We compared the am-
plitudes of BBP and BLP during every ses-
sion and every state for both ECoG and

MEG. The amplitudes of HF-BBP were significantly lower than
those of alpha-BLP (p � 10�4, paired t test), implying that SNR
was lower for HF-BBP than for alpha-BLP. Such a difference in
SNR was opposite to the observed difference in correlation be-
cause HF-BBP was more globally and nonspecifically correlated
across channels than was alpha-BLP. In addition, the amplitude
of HF-BBP showed no significant difference across awake and
sleep states (p � 0.86, paired t test), suggesting that different
states had comparable SNRs that could not account for the afore-
mentioned observation that the degree of global correlation was
stronger during sleep than wakefulness.

Together, these results from macaque ECoG and human MEG
data suggest that the temporal fluctuation of scale-free electro-
physiological activity is globally and nonspecifically synchro-
nized to a varying degree that depends on the arousal level or
state.

Scale-free EEG is coupled with global resting-state fMRI
Given the above findings, we further hypothesized that the
scale-free electrophysiological signal reflected the neural ori-
gin of the global fMRI signal. To test this hypothesis, we eval-
uated the coupling between concurrently acquired fMRI and
EEG data in the eyes-closed resting state. As in the ECoG and
MEG analyses, we extracted separate spectrograms for the
oscillatory and scale-free neuroelectric components from
EEG and averaged them across channels (see Fig. 5A for an
example). For either component, we calculated the cross-
correlation between the power fluctuation at every frequency
and the global fMRI signal obtained by averaging the time
series of all brain voxels. The resulting correlation coefficients,
described as a function of EEG frequency (up to 100 Hz) and
time lags (�30 to 30 s) between fMRI and EEG, were low and
variable across frequencies for the oscillatory component, but
significantly higher and consistent across frequencies for the
scale-free component (Fig. 5B). This result indicates the tight
coupling between scale-free EEG and global fMRI. This cou-
pling could be further represented by a linear transfer function
obtained by averaging the time-shifted cross-correlations
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across all frequencies. This transfer
function implies that an impulse change
in scale-free EEG is expected to cause a
delayed global fMRI response with
a narrow positive peak at �5 s and a
broad negative peak at �12.5 s (Fig.
5C). This transfer function generally
agrees with the hemodynamic response
function (HRF) used to model the neu-
rovascular coupling and suggests a
causal relationship between scale-free
EEG and global fMRI. In addition, we
also evaluated the cross-correlation be-
tween the global fMRI signal and the
BBP or BLP signal at every EEG channel.
We found that the global fMRI was
globally and significantly correlated
with EEG BBP, but not with BLP, when
fMRI was delayed from EEG by 5 s or
12.5 s ( p � 0.005, Bonferroni correction
for the number of channels; Fig. 6A,B).
Note that the transfer function that
linked scale-free EEG to global fMRI, al-
though qualitatively similar to the HRF,
had a deeper undershoot peaked at
12.5 s (Fig. 5) and the integral of the
transfer function was slightly negative.
The implication of this observation is
unclear and the underlying mechanism is entirely mysterious.

In addition, we also evaluated the cross-correlation between
the fMRI signal at every voxel and the global BBP fluctuation
averaged across all EEG channels. We found that the LF and HF
BBP fluctuations were significantly and positively (or negatively)
correlated with the fMRI signals when fMRI was delayed from
EEG by 5 s (or 12.5 s) for 69% (or 64%) and 65% (or 70%) of the
cortical gray matter, respectively (Fig. 6C,D). In contrast, the
correlation pattern between alpha-BLP and fMRI at a 5 s delay
was confined to specific brain regions, being positive in the thal-
amus but negative in the visual cortex. Significant fMRI-BLP
correlations were found at �14% of the cortical voxels, which
was significantly lower than those from BBP (p � 0.0034 for
LF-BBP vs BLP, or p � 0.0016 for HF-BBP vs BLP, paired Wil-
coxon signed-rank test; Fig. 6C). The above findings support the
notion that scale-free EEG is the neuroelectric correlate of global
fMRI fluctuation in the resting state.

Discussion
We investigated the neural origins and correlates of resting-state
fMRI. Our results demonstrate the following: (1) scale-free and
oscillatory components could be separated from neurophysio-
logical signals; (2) broadband power fluctuations of scale-free
ECoG and MEG were globally correlated in various arousal states;
(3) broadband fluctuation of scale-free EEG was directly coupled
with the concurrent global fMRI signal; and (4) these spatiotem-
poral properties of scale-free neural activity in relation to resting-
state fMRI were notably different from those of band-limited
neural oscillations, of which the power fluctuations were corre-
lated within specific regions or networks. Therefore, scale-free
and oscillatory neural processes both contribute to spontaneous
fMRI signals, but account selectively for global and modular spa-
tial patterns of functional connectivity, respectively.

Multitude neural correlates to resting-state fMRI
Resting-state fMRI has a complex and elusive basis related to a
multitude of neuronal and non-neuronal processes (Leopold and
Maier, 2012). The fMRI signal has been found to correlate to the
power fluctuations of various frequency components of electro-
physiology both during tasks (Mukamel et al., 2005; Niessing et
al., 2005; Goense and Logothetis, 2008; Scheeringa et al., 2011)
and at rest (Mantini et al., 2007; Shmuel and Leopold, 2008; de
Munck et al., 2009; Schölvinck et al., 2010; Liu et al., 2014; Hipp
and Siegel, 2015). Therefore, fMRI is shaped collectively by all
frequency components instead of indicating a single frequency
component.

Different frequency components may not always arise from
distinct neural processes. In fact, neural activity exhibits a vari-
able mixture of arrhythmic and rhythmic dynamics (He et al.,
2010; Buzsáki et al., 2012). These two types of dynamics differ in
their spectral profiles: the arrhythmic activity is broadband and
scale free, whereas the rhythmic activity is narrow-band and scale
specific. Without dissociating them, one has to limit themselves
to time periods or frequency ranges with either rhythmic or ar-
rhythmic activity, but not both, to study their individual dynam-
ics while being less concerned about their mutual interference.

In contrast, we advocate a two-step strategy. First, neural sig-
nals are separated into a broadband scale-free component and a
set of narrow-band oscillatory components. The IRASA method
used here (Wen and Liu, 2016) and other methods (Yamamoto
and Hughson, 1991; He et al., 2010; Miller et al., 2014) provide
the tools with which to dissociate oscillations at distinct frequen-
cies from frequency-independent broadband activity and to iso-
late arrhythmic activity from coexisting oscillations. Second, we
can characterize the separated scale-free or oscillatory compo-
nents and then compare them with the fMRI signal to uncover
their common features and direct relationships. However, IRASA
is unable to separate scale-free and oscillatory components in the
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time domain or to uncover their phase–phase or phase–ampli-
tude relationship.

Scale-free neural activity underlies global resting-state
fMRI activity
Scale-free neurophysiological signals can be well described by a
power-law function of frequency (Bédard et al., 2006; Manning et
al., 2009; He et al., 2010; Miller et al., 2014). Individual frequen-
cies are mutually dependent as constrained by the power-law
distribution. When the power-law function varies over time, the
powers at distinct frequencies cofluctuate accordingly. There-
fore, scale-free neural activity is uniquely suited to explain previ-
ous findings that correlations between fMRI signal and LFP
power were consistent across frequencies within a broad range
(Goense and Logothesis, 2008; Schölvinck et al., 2010). For its
broadband nature, it is also more appropriate to characterize
scale-free activity with its broadband power than the (likely col-
linear) band-limited powers at individual frequencies.

We showed here that scale-free neural signals exhibited spon-
taneous power fluctuations that were globally synchronized and
directly coupled with global resting-state fMRI activity. These
findings extended the previous finding that widespread resting-
state fMRI activity was correlated with the LFP power fluctuation
at a single cortical site (Schölvinck et al., 2010). First, we further
specified the neural basis of global fMRI activity to scale-free
neural activity. The broadband distribution of scale-free activity
could well explain the consistent correlations between the global
fMRI signal and the band-limited powers of LFP across frequen-
cies in the gamma band (�40 Hz) in the absence of oscillations
(Schölvinck et al., 2010). Such broadband correlations could be
generalized to the entire spectral range (Fig. 5) after using IRASA
to exclude oscillations. Second, distributed neural recordings
with ECoG and MEG offered additional evidence that scale-free
activity was indeed globally correlated (Figs. 2, 4). It further con-

firms its role as the neural basis of global resting-state fMRI ac-
tivity. Last, neural activity underlying global fMRI should be
widespread in itself and thus be observable across large spatial
scales. We showed that the neural basis of global resting-state
fMRI activity also manifested itself as synchronized population
activities measured with ECoG, MEG, and EEG for both ma-
caques and humans. It further calls for serious caution in remov-
ing the global signal in resting-state fMRI analysis (Murphy et al.,
2009; Saad et al., 2012).

State dependence of widespread scale-free activity
The fluctuation and correlation in the broadband power of scale-
free ECoG was more intensive and global during sleep than wake-
fulness (Fig. 2), suggesting the dependence of scale-free activity
on arousal states. Spontaneous fMRI signals were similarly differ-
ent in sleep versus wakeful states (Fukunaga et al., 2006; Horovitz
et al., 2008). There is thus likely a vigilance-related mechanism
that supports the widespread and nonspecific fluctuation in both
scale-free electrophysiology and fMRI.

Indeed, the reticular activation system (RAS) governs the
awareness, arousal, and vigilance level and innervates the entire
cortex through diffuse neuromodulation pathways (Magoun,
1952). These pathways comprise a structural network to ascend
time-variant neurochemical (e.g., cholinergic, Mesulam, 1995),
common inputs to drive the global cortical fluctuation while reg-
ulating cortical state (Harris and Thiele, 2011) and sleep–wake
transition (Saper et al., 2001). Stimulating RAS disrupts cortical
oscillations and induces arrhythmic activity, indicating the role
of RAS in modulating scale-free electrophysiology (Moruzzi and
Magoun, 1949; Munk et al., 1996). Other recent studies also em-
phasize the vigilance-related physiological processes or events as
the source of global activity fluctuations (Wong et al., 2013; Liu et
al., 2015). The specific relationship among RAS, scale-free activ-
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ity, and vigilance remains speculative, and needs to be elucidated
in future studies.

Neural and hemodynamic activity across multiple scales
LFP, ECoG, MEG, and EEG result from the sum of population
activity within increasingly larger spatial scales. Their precise re-
lations to underlying neuronal activity are complex (Buzsáki et
al., 2012). fMRI measures hemodynamic activity in a spatial scale
closer to that of LFP but considerably different from those of

ECoG/EEG/MEG. The temporal relationship between neural and
hemodynamic signals across different spatial scales is not
straightforward to interpret.

Spiking activity is not directly observable with far-field re-
cordings (e.g., ECoG, MEG, and EEG), whereas synaptic activity
is observable with LFP and far-field ECoG and MEG/EEG if they
are aligned spatially (Buzsáki et al., 2012). Importantly, spiking
activity has been shown to correlate with the high-gamma or
broadband power of synaptic activity observed with LFP (Ray
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and Maunsell, 2011), ECoG (Manning et al., 2009; Miller et al.,
2009, 2014) and EEG (Whittingstall and Logothesis, 2009). It is
plausible that presynaptic spiking activity arrives in synchrony to
a population of spatially aligned neurons such that the vector sum
of postsynaptic currents is strong enough to produce macro-
scopic signals. When neuronal spikes are temporally irregular
and arrhythmic, population-averaged presynaptic spiking activ-
ity and postsynaptic current activity should both be (time) scale
free and exhibit a power-law spectral distribution. Therefore, the
broadband power of population synaptic activity is expected to
correlate to spiking activity averaged in the period when the
power spectrum is evaluated. Because the fMRI signal is coupled
to population synaptic activity (Logothetis et al., 2001), this spec-
ulative scenario further implies that the fMRI signal is correlated
with both broadband synaptic activity and arrhythmic spiking
activity at the level of cortical populations.

Neural oscillations versus resting-state fMRI
Oscillations have been common targets for neurophysiological
studies (Buzsáki and Draguhn, 2004; Buzsáki, 2006). Oscillations
may contribute to network fMRI activity in an informative man-
ner (Hipp et al., 2012; Siegel et al., 2012), but be obscured or
confounded by broadband neural activity that also correlates to
fMRI. This confound is of particular concern for the low-
frequency range (�30 Hz), in which oscillations are most notable
(Manning et al., 2009; Miller et al., 2014). This may explain pre-
vious contradicting findings that changes in the delta, alpha, or
beta power could be correlated with fMRI both negatively and
positively across various conditions and regions (Mukamel et al.,
2005; Goense and Logothetis, 2008; de Munck et al., 2009).

After removing the scale-free component from neural signals,
the remaining oscillatory component was truly band limited and
timescale specific. Unlike scale-free activity, the power fluctua-
tions in (alpha) oscillatory activity were correlated within specific
regions or networks and the correlations between the power of
(alpha) oscillatory activity and fMRI signals was confined to spe-
cific thalamic and cortical sites. These results led us to deduce that
scale-free and oscillatory neural activities, while both contribut-
ing to hemodynamic fluctuations, account for distinct spatial
patterns of correlations in resting-state fMRI signals. Specifically,
globally and modularly orchestrated RSNs report scale-free
and oscillatory electrophysiological processes and interactions,
respectively.
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